Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 3, Pages 339–371
DOI: https://doi.org/10.4213/tmf1984
(Mi tmf1984)
 

This article is cited in 48 scientific papers (total in 48 papers)

Integrals over moduli spaces, ground ring, and four-point function in minimal Liouville gravity

A. A. Belavina, Al. B. Zamolodchikovbc

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics
c Laboratoire de Physique Théorique et Astroparticules Université Montpellier II, Montpellier, France
References:
Abstract: Directly evaluating the correlation functions in 2D minimal gravity requires integrating over the moduli space. For degenerate fields, the higher equations of motion of the Liouville field theory allow converting the integrand to a derivative, which reduces the integral to boundary terms and the so-called curvature contribution. The latter is directly related to the vacuum expectation value of the corresponding ground-ring element. The action of this element on the cohomology related to a generic matter primary field is evaluated directly in terms of the operator product expansions of the degenerate fields. This allows constructing the ground-ring algebra and evaluating the curvature term in the four-point function. We also analyze the operator product expansions of the Liouville "logarithmic primaries" and calculate the relevant logarithmic terms. Based on this, we obtain an explicit expression for the four-point correlation number of one degenerate and three generic matter fields. We compare this integral with the numbers obtained from the matrix models of 2D gravity and discuss some related problems and ambiguities.
Keywords: Polyakov string theory, Liouville gravity.
Received: 27.10.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 3, Pages 729–754
DOI: https://doi.org/10.1007/s11232-006-0075-8
Bibliographic databases:
Language: Russian
Citation: A. A. Belavin, Al. B. Zamolodchikov, “Integrals over moduli spaces, ground ring, and four-point function in minimal Liouville gravity”, TMF, 147:3 (2006), 339–371; Theoret. and Math. Phys., 147:3 (2006), 729–754
Citation in format AMSBIB
\Bibitem{BelZam06}
\by A.~A.~Belavin, Al.~B.~Zamolodchikov
\paper Integrals over moduli spaces, ground ring, and four-point function in
minimal Liouville gravity
\jour TMF
\yr 2006
\vol 147
\issue 3
\pages 339--371
\mathnet{http://mi.mathnet.ru/tmf1984}
\crossref{https://doi.org/10.4213/tmf1984}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254721}
\zmath{https://zbmath.org/?q=an:1177.81086}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..729B}
\elib{https://elibrary.ru/item.asp?id=9222054}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 3
\pages 729--754
\crossref{https://doi.org/10.1007/s11232-006-0075-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239030100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745197998}
Linking options:
  • https://www.mathnet.ru/eng/tmf1984
  • https://doi.org/10.4213/tmf1984
  • https://www.mathnet.ru/eng/tmf/v147/i3/p339
  • This publication is cited in the following 48 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:911
    Full-text PDF :396
    References:99
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024