Abstract:
Bäcklund transformations for multifield analogs of the nonlinear Schrödinger equation that correspond to unital Jordan algebras are found. These Bäcklund transformations are explicit invertible autotransformations and as a result they are very convenient for the construction of exact solutions. It is established that to these Bäcklund transformations there correspond integrable multifield discrete–differential equations that generalize the infinite Toda chain. A simple construction is given by means of which multifield analogs of the infinite Toda chain can be constructed from every unital Jordan algebra. New examples of such chains are given.
Citation:
S. I. Svinolupov, R. I. Yamilov, “Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain”, TMF, 98:2 (1994), 207–219; Theoret. and Math. Phys., 98:2 (1994), 139–146
\Bibitem{SviYam94}
\by S.~I.~Svinolupov, R.~I.~Yamilov
\paper Explicit B\"acklund transformations for multifield Schr\"odinger equations. Jordan generalizations of the Toda chain
\jour TMF
\yr 1994
\vol 98
\issue 2
\pages 207--219
\mathnet{http://mi.mathnet.ru/tmf1973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1291375}
\zmath{https://zbmath.org/?q=an:0818.35115}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 2
\pages 139--146
\crossref{https://doi.org/10.1007/BF01015792}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PA59100004}
Linking options:
https://www.mathnet.ru/eng/tmf1973
https://www.mathnet.ru/eng/tmf/v98/i2/p207
This publication is cited in the following 10 articles:
Qiu D. Ying M. Lv C., “The Determinant Representation of Darboux Transformation For the Kulish-Sklyanin Model and Novel Soliton Solutions For M=2”, Appl. Math. Lett., 125 (2022), 107727
Artyom V. Yurov, Valerian A. Yurov, “On the Question of the Bäcklund Transformations and Jordan Generalizations of the Second Painlevé Equation”, Symmetry, 13:11 (2021), 2095
Zhou R. Li N. Zhu J., “A General Method For Constructing Vector Integrable Lattice Systems”, Phys. Lett. A, 383:8 (2019), 697–702
Adler V.E., Postnikov V.V., “Linear problems and Backlund transformations for the Hirota-Ohta system”, Phys Lett A, 375:3 (2011), 468–473
M. D. Vereschagin, S. D. Vereschagin, A. V. Yurov, “Trekhmernoe preobrazovanie Mutara”, Matem. modelirovanie, 18:5 (2006), 111–125
Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541
Adler, VE, “On the structure of the Backlund transformations for the relativistic lattices”, Journal of Nonlinear Mathematical Physics, 7:1 (2000), 34
Adler, VE, “Multi-component Volterra acid Toda type integrable equations”, Physics Letters A, 254:1–2 (1999), 24
A. V. Yurov, “Bäcklund–Shlesinger transformations for Davey–Stewartson equations”, Theoret. and Math. Phys., 109:3 (1996), 1508–1514