Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 98, Number 2, Pages 207–219 (Mi tmf1973)  

This article is cited in 10 scientific papers (total in 10 papers)

Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain

S. I. Svinolupov, R. I. Yamilov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: Bäcklund transformations for multifield analogs of the nonlinear Schrödinger equation that correspond to unital Jordan algebras are found. These Bäcklund transformations are explicit invertible autotransformations and as a result they are very convenient for the construction of exact solutions. It is established that to these Bäcklund transformations there correspond integrable multifield discrete–differential equations that generalize the infinite Toda chain. A simple construction is given by means of which multifield analogs of the infinite Toda chain can be constructed from every unital Jordan algebra. New examples of such chains are given.
Received: 13.01.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 98, Issue 2, Pages 139–146
DOI: https://doi.org/10.1007/BF01015792
Bibliographic databases:
Language: Russian
Citation: S. I. Svinolupov, R. I. Yamilov, “Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain”, TMF, 98:2 (1994), 207–219; Theoret. and Math. Phys., 98:2 (1994), 139–146
Citation in format AMSBIB
\Bibitem{SviYam94}
\by S.~I.~Svinolupov, R.~I.~Yamilov
\paper Explicit B\"acklund transformations for multifield Schr\"odinger equations. Jordan generalizations of the Toda chain
\jour TMF
\yr 1994
\vol 98
\issue 2
\pages 207--219
\mathnet{http://mi.mathnet.ru/tmf1973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1291375}
\zmath{https://zbmath.org/?q=an:0818.35115}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 2
\pages 139--146
\crossref{https://doi.org/10.1007/BF01015792}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PA59100004}
Linking options:
  • https://www.mathnet.ru/eng/tmf1973
  • https://www.mathnet.ru/eng/tmf/v98/i2/p207
  • This publication is cited in the following 10 articles:
    1. Qiu D. Ying M. Lv C., “The Determinant Representation of Darboux Transformation For the Kulish-Sklyanin Model and Novel Soliton Solutions For M=2”, Appl. Math. Lett., 125 (2022), 107727  crossref  isi
    2. Artyom V. Yurov, Valerian A. Yurov, “On the Question of the Bäcklund Transformations and Jordan Generalizations of the Second Painlevé Equation”, Symmetry, 13:11 (2021), 2095  crossref
    3. Zhou R. Li N. Zhu J., “A General Method For Constructing Vector Integrable Lattice Systems”, Phys. Lett. A, 383:8 (2019), 697–702  crossref  mathscinet  isi  scopus
    4. Jinyan Zhu, Ruguang Zhou, “A vector CTL–RTL hierarchy with bi-Hamiltonian structure”, Applied Mathematics Letters, 87 (2019), 154  crossref
    5. Adler V.E., Postnikov V.V., “Linear problems and Backlund transformations for the Hirota-Ohta system”, Phys Lett A, 375:3 (2011), 468–473  crossref  isi
    6. M. D. Vereschagin, S. D. Vereschagin, A. V. Yurov, “Trekhmernoe preobrazovanie Mutara”, Matem. modelirovanie, 18:5 (2006), 111–125  mathnet  mathscinet  zmath
    7. Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541  crossref  mathscinet  zmath  adsnasa  isi
    8. Adler, VE, “On the structure of the Backlund transformations for the relativistic lattices”, Journal of Nonlinear Mathematical Physics, 7:1 (2000), 34  crossref  mathscinet  zmath  adsnasa  isi
    9. Adler, VE, “Multi-component Volterra acid Toda type integrable equations”, Physics Letters A, 254:1–2 (1999), 24  crossref  mathscinet  zmath  adsnasa  isi
    10. A. V. Yurov, “Bäcklund–Shlesinger transformations for Davey–Stewartson equations”, Theoret. and Math. Phys., 109:3 (1996), 1508–1514  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :109
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025