Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 2, Pages 328–336
DOI: https://doi.org/10.4213/tmf1968
(Mi tmf1968)
 

This article is cited in 6 scientific papers (total in 6 papers)

Description of the paramagnet–spin glass transition in the Edwards–Anderson model using critical-dynamics methods

M. G. Vasin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (327 kB) Citations (6)
References:
Abstract: We show that the paramagnet–spin glass transition can be described in the Edwards–Anderson model using critical-dynamics methods and taking the ultrametric topology of the temporal space into account. In the framework of the suggested approach, we derive the Vogel–Fulcher relation for the system relaxation time. We prove that the fluctuation-dissipation theorem holds for the given model if there is no relaxation-time hierarchy.
Keywords: spin glass, phase transition, critical dynamics, ultrametricity.
Received: 05.09.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 2, Pages 721–728
DOI: https://doi.org/10.1007/s11232-006-0074-9
Bibliographic databases:
Language: Russian
Citation: M. G. Vasin, “Description of the paramagnet–spin glass transition in the Edwards–Anderson model using critical-dynamics methods”, TMF, 147:2 (2006), 328–336; Theoret. and Math. Phys., 147:2 (2006), 721–728
Citation in format AMSBIB
\Bibitem{Vas06}
\by M.~G.~Vasin
\paper Description of the paramagnet--spin glass transition in the
Edwards--Anderson model using critical-dynamics methods
\jour TMF
\yr 2006
\vol 147
\issue 2
\pages 328--336
\mathnet{http://mi.mathnet.ru/tmf1968}
\crossref{https://doi.org/10.4213/tmf1968}
\zmath{https://zbmath.org/?q=an:1177.82118}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..721V}
\elib{https://elibrary.ru/item.asp?id=9296917}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 2
\pages 721--728
\crossref{https://doi.org/10.1007/s11232-006-0074-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238168900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646729675}
Linking options:
  • https://www.mathnet.ru/eng/tmf1968
  • https://doi.org/10.4213/tmf1968
  • https://www.mathnet.ru/eng/tmf/v147/i2/p328
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :276
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024