Abstract:
We show that the paramagnet–spin glass transition can be described in the
Edwards–Anderson model using critical-dynamics methods and taking the
ultrametric topology of the temporal space into account. In the framework of
the suggested approach, we derive the Vogel–Fulcher relation for the system
relaxation time. We prove that the fluctuation-dissipation theorem holds for
the given model if there is no relaxation-time hierarchy.
Citation:
M. G. Vasin, “Description of the paramagnet–spin glass transition in the
Edwards–Anderson model using critical-dynamics methods”, TMF, 147:2 (2006), 328–336; Theoret. and Math. Phys., 147:2 (2006), 721–728
\Bibitem{Vas06}
\by M.~G.~Vasin
\paper Description of the paramagnet--spin glass transition in the
Edwards--Anderson model using critical-dynamics methods
\jour TMF
\yr 2006
\vol 147
\issue 2
\pages 328--336
\mathnet{http://mi.mathnet.ru/tmf1968}
\crossref{https://doi.org/10.4213/tmf1968}
\zmath{https://zbmath.org/?q=an:1177.82118}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..721V}
\elib{https://elibrary.ru/item.asp?id=9296917}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 2
\pages 721--728
\crossref{https://doi.org/10.1007/s11232-006-0074-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238168900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646729675}
Linking options:
https://www.mathnet.ru/eng/tmf1968
https://doi.org/10.4213/tmf1968
https://www.mathnet.ru/eng/tmf/v147/i2/p328
This publication is cited in the following 6 articles:
Belokon V., Lapenkov R., Chibiriak E., Dyachenko O., “Magnetic Susceptibility of Systems With Different Types of Interactions: the Random Interaction Fields Method”, J. Magn. Magn. Mater., 512 (2020), 167051
Petr Andriushchenko, Konstantin Nefedev, 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA), 2014, 9
M. G. Vasin, E. E. Tareeva, T. I. Shchelkacheva, N. M. Shchelkachev, “Ultrametricity of the state space in glasses”, Theoret. and Math. Phys., 174:2 (2013), 197–208
Petr Dmitrievich Andriushchenko, Konstantin Valentinovich Nefedev, “Magnetic Phase Transitions in the Lattice Ising Model”, AMR, 718-720 (2013), 166
M. G. Vasin, N. M. Shchelkachev, V. M. Vinokur, “A new approach for describing glass transition kinetics”, Theoret. and Math. Phys., 163:1 (2010), 537–548
Vasin, MG, “General approach to the description of the glass transition in terms of critical dynamics”, Physical Review B, 74:21 (2006), 214116