Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 2, Pages 315–322
DOI: https://doi.org/10.4213/tmf1966
(Mi tmf1966)
 

This article is cited in 37 scientific papers (total in 37 papers)

The $q$-deformed harmonic oscillator, coherent states, and the uncertainty relation

V. V. Eremin, A. A. Meldianov

M. V. Lomonosov Moscow State University, Department of Chemistry
References:
Abstract: For a $q$-deformed harmonic oscillator, we find explicit coordinate representations of the creation and annihilation operators, eigenfunctions, and coherent states {(}the last being defined as eigenstates of the annihilation operator{\rm)}. We calculate the product of the “coordinate–momentum” uncertainties in $q$-oscillator eigenstates and in coherent states. For the oscillator, this product is minimum in the ground state and equals $1/2$, as in the standard quantum mechanics. For coherent states, the $q$-deformation results in a violation of the standard uncertainty relation{;} the product of the coordinate- and momentum-operator uncertainties is always less than $1/2$. States with the minimum uncertainty, which tends to zero, correspond to the values of $\lambda$ near the convergence radius of the $q$-exponential.
Keywords: $q$-deformation, harmonic oscillator, creation operators, annihilation operators, coherent states, uncertainty relation.
Received: 04.07.2005
Revised: 27.09.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 2, Pages 709–715
DOI: https://doi.org/10.1007/s11232-006-0072-y
Bibliographic databases:
Language: Russian
Citation: V. V. Eremin, A. A. Meldianov, “The $q$-deformed harmonic oscillator, coherent states, and the uncertainty relation”, TMF, 147:2 (2006), 315–322; Theoret. and Math. Phys., 147:2 (2006), 709–715
Citation in format AMSBIB
\Bibitem{EreMel06}
\by V.~V.~Eremin, A.~A.~Meldianov
\paper The $q$-deformed harmonic oscillator, coherent states, and the
uncertainty relation
\jour TMF
\yr 2006
\vol 147
\issue 2
\pages 315--322
\mathnet{http://mi.mathnet.ru/tmf1966}
\crossref{https://doi.org/10.4213/tmf1966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254882}
\zmath{https://zbmath.org/?q=an:1177.81073}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..709E}
\elib{https://elibrary.ru/item.asp?id=9296915}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 2
\pages 709--715
\crossref{https://doi.org/10.1007/s11232-006-0072-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238168900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646722456}
Linking options:
  • https://www.mathnet.ru/eng/tmf1966
  • https://doi.org/10.4213/tmf1966
  • https://www.mathnet.ru/eng/tmf/v147/i2/p315
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024