Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 2, Pages 229–239
DOI: https://doi.org/10.4213/tmf1960
(Mi tmf1960)
 

The levels of the two-particle Schrödinger operator corresponding to a crystal film

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: For a two-particle Schrödinger operator considered in a cell and having a potential periodic in four variables, we establish the existence of levels {(}i.e., eigenvalues or resonances{\rm)} in the neighborhood of singular points of the unperturbed Green's function and derive an asymptotic formula for these levels. We prove an existence and uniqueness theorem for the solution of the corresponding Lippmann–Schwinger equation.
Keywords: two-particle Schrödinger operator, Lippmann–Schwinger equation, resonance, eigenvalue.
Received: 27.06.2005
Revised: 05.10.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 2, Pages 637–645
DOI: https://doi.org/10.1007/s11232-006-0066-9
Bibliographic databases:
Language: Russian
Citation: Yu. P. Chuburin, “The levels of the two-particle Schrödinger operator corresponding to a crystal film”, TMF, 147:2 (2006), 229–239; Theoret. and Math. Phys., 147:2 (2006), 637–645
Citation in format AMSBIB
\Bibitem{Chu06}
\by Yu.~P.~Chuburin
\paper The levels of the two-particle Schr\"odinger operator corresponding to
a crystal film
\jour TMF
\yr 2006
\vol 147
\issue 2
\pages 229--239
\mathnet{http://mi.mathnet.ru/tmf1960}
\crossref{https://doi.org/10.4213/tmf1960}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254877}
\zmath{https://zbmath.org/?q=an:1177.82114}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..637C}
\elib{https://elibrary.ru/item.asp?id=9296909}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 2
\pages 637--645
\crossref{https://doi.org/10.1007/s11232-006-0066-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238168900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646737422}
Linking options:
  • https://www.mathnet.ru/eng/tmf1960
  • https://doi.org/10.4213/tmf1960
  • https://www.mathnet.ru/eng/tmf/v147/i2/p229
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:340
    Full-text PDF :197
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024