Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 145, Number 2, Pages 212–220
DOI: https://doi.org/10.4213/tmf1897
(Mi tmf1897)
 

This article is cited in 5 scientific papers (total in 5 papers)

Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice

Zh. I. Abdullaev

A. Navoi Samarkand State University
Full-text PDF (228 kB) Citations (5)
References:
Abstract: We consider the two-particle Schrodinger operator $H(k)$ on the one-dimensional lattice $\mathbb Z$. The operator $H(\pi)$ has infinitely many eigenvalues $z_m(\pi)=\hat v(m)$, $m\in\mathbb Z_+$. If the potential $\hat v$ increases on $\mathbb Z_+$, then only the eigenvalue $z_0(\pi)$ is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues $z_m(\pi)$, $m\in\mathbb N$, the operator $H(\pi)$ splits into two nondegenerate eigenvalues $z_m^-(k)$ and $z_m^+(k)$ under small variations of $k\in(\pi-\delta,\pi)$. We show that $z_m^-(k)<z_m^+(k)$ and obtain an estimate for $z_m^+(k)-z_m^-(k)$ for при $k\in(\pi-\delta,\pi)$. The eigenvalues $z_0(k)$ and $z_1^-(k)$ increase on$[\pi-\delta,\pi]$. If $(\Delta\hat v)(m)>0$, then $z_m^\pm(k)$ for $m\geqslant 2$ also has this property.
Keywords: Hamiltonian, Schrodinger operator, total quasimomentum, eigenvalue, perturbation theory.
Received: 25.02.2005
Revised: 06.05.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 145, Issue 2, Pages 1551–1558
DOI: https://doi.org/10.1007/s11232-005-0182-y
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, “Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice”, TMF, 145:2 (2005), 212–220; Theoret. and Math. Phys., 145:2 (2005), 1551–1558
Citation in format AMSBIB
\Bibitem{Abd05}
\by Zh.~I.~Abdullaev
\paper Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
\jour TMF
\yr 2005
\vol 145
\issue 2
\pages 212--220
\mathnet{http://mi.mathnet.ru/tmf1897}
\crossref{https://doi.org/10.4213/tmf1897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2213326}
\zmath{https://zbmath.org/?q=an:1178.81077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...145.1551A}
\elib{https://elibrary.ru/item.asp?id=17703458}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 145
\issue 2
\pages 1551--1558
\crossref{https://doi.org/10.1007/s11232-005-0182-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234123200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1897
  • https://doi.org/10.4213/tmf1897
  • https://www.mathnet.ru/eng/tmf/v145/i2/p212
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :230
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024