Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 145, Number 2, Pages 212–220
DOI: https://doi.org/10.4213/tmf1897
(Mi tmf1897)
 

This article is cited in 6 scientific papers (total in 6 papers)

Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice

Zh. I. Abdullaev

A. Navoi Samarkand State University
Full-text PDF (228 kB) Citations (6)
References:
Abstract: We consider the two-particle Schrodinger operator H(k) on the one-dimensional lattice Z. The operator H(π) has infinitely many eigenvalues zm(π)=ˆv(m), mZ+. If the potential ˆv increases on Z+, then only the eigenvalue z0(π) is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues zm(π), mN, the operator H(π) splits into two nondegenerate eigenvalues zm(k) and z+m(k) under small variations of k(πδ,π). We show that zm(k)<z+m(k) and obtain an estimate for z+m(k)zm(k) for при k(πδ,π). The eigenvalues z0(k) and z1(k) increase on[πδ,π]. If (Δˆv)(m)>0, then z±m(k) for m2 also has this property.
Keywords: Hamiltonian, Schrodinger operator, total quasimomentum, eigenvalue, perturbation theory.
Received: 25.02.2005
Revised: 06.05.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 145, Issue 2, Pages 1551–1558
DOI: https://doi.org/10.1007/s11232-005-0182-y
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, “Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice”, TMF, 145:2 (2005), 212–220; Theoret. and Math. Phys., 145:2 (2005), 1551–1558
Citation in format AMSBIB
\Bibitem{Abd05}
\by Zh.~I.~Abdullaev
\paper Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
\jour TMF
\yr 2005
\vol 145
\issue 2
\pages 212--220
\mathnet{http://mi.mathnet.ru/tmf1897}
\crossref{https://doi.org/10.4213/tmf1897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2213326}
\zmath{https://zbmath.org/?q=an:1178.81077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...145.1551A}
\elib{https://elibrary.ru/item.asp?id=17703458}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 145
\issue 2
\pages 1551--1558
\crossref{https://doi.org/10.1007/s11232-005-0182-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234123200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1897
  • https://doi.org/10.4213/tmf1897
  • https://www.mathnet.ru/eng/tmf/v145/i2/p212
  • This publication is cited in the following 6 articles:
    1. Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024  crossref
    2. J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828  crossref
    3. J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728  crossref
    4. J.I. Abdullaev, Sh.H. Ergashova, Y.S. Shotemirov, “Bound states of a system of two bosons with a spherically potential on a lattice”, J. Phys.: Conf. Ser., 2070:1 (2021), 012023  crossref
    5. Zh. I. Abdullaev, K. D. Kuliev, “Bound states of a two-boson system on a two-dimensional lattice”, Theoret. and Math. Phys., 186:2 (2016), 231–250  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Abdullayev J., Mamirov B., “Bound states of the system of two fermions on the three-dimensional lattice”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F and Rakhimov I., IOP Publishing Ltd, 2016, 012022  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :249
    References:102
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025