Abstract:
We consider the two-particle Schrodinger operator $H(k)$ on the one-dimensional lattice $\mathbb Z$. The operator $H(\pi)$ has infinitely many eigenvalues $z_m(\pi)=\hat v(m)$, $m\in\mathbb Z_+$. If the potential $\hat v$ increases on $\mathbb Z_+$, then only the eigenvalue $z_0(\pi)$ is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues $z_m(\pi)$, $m\in\mathbb N$, the operator $H(\pi)$ splits into two nondegenerate eigenvalues $z_m^-(k)$ and $z_m^+(k)$ under small variations of $k\in(\pi-\delta,\pi)$. We show that $z_m^-(k)<z_m^+(k)$ and obtain an estimate for $z_m^+(k)-z_m^-(k)$ for при $k\in(\pi-\delta,\pi)$. The eigenvalues $z_0(k)$ and $z_1^-(k)$ increase on$[\pi-\delta,\pi]$. If $(\Delta\hat v)(m)>0$, then $z_m^\pm(k)$ for $m\geqslant 2$ also has this property.
Keywords:
Hamiltonian, Schrodinger operator, total quasimomentum, eigenvalue, perturbation theory.
Citation:
Zh. I. Abdullaev, “Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice”, TMF, 145:2 (2005), 212–220; Theoret. and Math. Phys., 145:2 (2005), 1551–1558
\Bibitem{Abd05}
\by Zh.~I.~Abdullaev
\paper Perturbation Theory for the Two-Particle Schrodinger Operator on a One-Dimensional Lattice
\jour TMF
\yr 2005
\vol 145
\issue 2
\pages 212--220
\mathnet{http://mi.mathnet.ru/tmf1897}
\crossref{https://doi.org/10.4213/tmf1897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2213326}
\zmath{https://zbmath.org/?q=an:1178.81077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...145.1551A}
\elib{https://elibrary.ru/item.asp?id=17703458}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 145
\issue 2
\pages 1551--1558
\crossref{https://doi.org/10.1007/s11232-005-0182-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234123200007}
Linking options:
https://www.mathnet.ru/eng/tmf1897
https://doi.org/10.4213/tmf1897
https://www.mathnet.ru/eng/tmf/v145/i2/p212
This publication is cited in the following 6 articles:
Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024
J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828
J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728
J.I. Abdullaev, Sh.H. Ergashova, Y.S. Shotemirov, “Bound states of a system of two bosons with a spherically potential on a lattice”, J. Phys.: Conf. Ser., 2070:1 (2021), 012023
Zh. I. Abdullaev, K. D. Kuliev, “Bound states of a two-boson system on a two-dimensional lattice”, Theoret. and Math. Phys., 186:2 (2016), 231–250
Abdullayev J., Mamirov B., “Bound states of the system of two fermions on the three-dimensional lattice”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F and
Rakhimov I., IOP Publishing Ltd, 2016, 012022