Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 3, Pages 453–471
DOI: https://doi.org/10.4213/tmf1870
(Mi tmf1870)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function

A. V. Domrin

M. V. Lomonosov Moscow State University
Full-text PDF (337 kB) Citations (7)
References:
Abstract: We obtain a simple sufficient condition for the solvability of the Riemann factorization problem for matrix-valued functions on a circle. This condition is based on the symmetry principle. As an application, we consider nonlinear evolution equations that can be obtained by a unitary reduction from the zero-curvature equations connecting a linear function of the spectral parameter $z$ and a polynomial of $z$. We consider solutions obtained by dressing the zero solution with a function holomorphic at infinity. We show that all such solutions are meromorphic functions on $\mathbb{C}^2_{xt}$ without singularities on $\mathbb{R}^2_{xt}$. This class of solutions contains all generic finite-gap solutions and many rapidly decreasing solutions but is not exhausted by them. Any solution of this class, regarded as a function of $x$ for almost every fixed $t\in\mathbb{C}$, is a potential with a convergent Baker–Akhiezer function for the corresponding matrix-valued differential operator of the first order.
Keywords: Riemann factorization problem, zero-curvature conditions.
Received: 17.01.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 3, Pages 1264–1278
DOI: https://doi.org/10.1007/s11232-005-0158-y
Bibliographic databases:
Language: Russian
Citation: A. V. Domrin, “The Riemann Problem and Matrix-Valued Potentials with a Convergent Baker–Akhiezer Function”, TMF, 144:3 (2005), 453–471; Theoret. and Math. Phys., 144:3 (2005), 1264–1278
Citation in format AMSBIB
\Bibitem{Dom05}
\by A.~V.~Domrin
\paper The Riemann Problem and Matrix-Valued Potentials with a~Convergent Baker--Akhiezer Function
\jour TMF
\yr 2005
\vol 144
\issue 3
\pages 453--471
\mathnet{http://mi.mathnet.ru/tmf1870}
\crossref{https://doi.org/10.4213/tmf1870}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191841}
\zmath{https://zbmath.org/?q=an:1178.30048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1264D}
\elib{https://elibrary.ru/item.asp?id=9155033}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 3
\pages 1264--1278
\crossref{https://doi.org/10.1007/s11232-005-0158-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232646400002}
\elib{https://elibrary.ru/item.asp?id=13481586}
Linking options:
  • https://www.mathnet.ru/eng/tmf1870
  • https://doi.org/10.4213/tmf1870
  • https://www.mathnet.ru/eng/tmf/v144/i3/p453
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:653
    Full-text PDF :259
    References:92
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024