Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 2, Pages 348–353
DOI: https://doi.org/10.4213/tmf1860
(Mi tmf1860)
 

This article is cited in 5 scientific papers (total in 5 papers)

Exponentially Tapered Josephson Junction: Some Analytic Results

M. Jaworski

Institute of Physics, Polish Academy of Sciences
Full-text PDF (239 kB) Citations (5)
References:
Abstract: We investigate the dynamical properties of an exponentially tapered Josephson junction using a simple one-dimensional model described by a perturbed (nearly integrable) sine-Gordon equation. An approximate analytic solution is based on the linearization about a rapidly oscillating background. We compare the analytic results with direct numerical simulations for the magnetic field patterns in the junction.
Keywords: Josephson junction, sine-Gordon equation.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 2, Pages 1176–1180
DOI: https://doi.org/10.1007/s11232-005-0148-0
Bibliographic databases:
Language: Russian
Citation: M. Jaworski, “Exponentially Tapered Josephson Junction: Some Analytic Results”, TMF, 144:2 (2005), 348–353; Theoret. and Math. Phys., 144:2 (2005), 1176–1180
Citation in format AMSBIB
\Bibitem{Jaw05}
\by M.~Jaworski
\paper Exponentially Tapered Josephson Junction: Some Analytic Results
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 348--353
\mathnet{http://mi.mathnet.ru/tmf1860}
\crossref{https://doi.org/10.4213/tmf1860}
\zmath{https://zbmath.org/?q=an:1178.35331}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1176J}
\elib{https://elibrary.ru/item.asp?id=17703444}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1176--1180
\crossref{https://doi.org/10.1007/s11232-005-0148-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232092900014}
Linking options:
  • https://www.mathnet.ru/eng/tmf1860
  • https://doi.org/10.4213/tmf1860
  • https://www.mathnet.ru/eng/tmf/v144/i2/p348
  • This publication is cited in the following 5 articles:
    1. De Angelis M., “A Wave Equation Perturbed By Viscous Terms: Fast and Slow Times Diffusion Effects in a Neumann Problem”, Ric. Mat., 68:1 (2019), 237–252  crossref  mathscinet  isi  scopus
    2. De Angelis M., “On the Transition From Parabolicity to Hyperbolicity For a Nonlinear Equation Under Neumann Boundary Conditions”, Meccanica, 53:15 (2018), 3651–3659  crossref  mathscinet  isi  scopus
    3. De Angelis M., Fiore G., “Diffusion Effects in a Superconductive Model”, Commun. Pure Appl. Anal, 13:1 (2014), 217–223  crossref  mathscinet  zmath  isi  scopus  scopus
    4. De Angelis M., Renno P., “On Asymptotic Effects of Boundary Perturbations in Exponentially Shaped Josephson Junctions”, Acta Appl. Math., 132:1, SI (2014), 251–259  crossref  mathscinet  zmath  isi  scopus  scopus
    5. De Angelis M., “On Exponentially Shaped Josephson Junctions”, Acta Appl. Math., 122:1, SI (2012), 179–189  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :202
    References:57
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025