Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 2, Pages 324–335
DOI: https://doi.org/10.4213/tmf1857
(Mi tmf1857)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity

B. V. Gisin, R. Driben, B. A. Malomed, I. M. Merhasin

Tel Aviv University
Full-text PDF (344 kB) Citations (3)
References:
Abstract: We consider spatial solitons in a channel waveguide or in a periodic array of rectangular potential wells (the Kronig–Penney (KP) model) in the presence of the uniform cubic-quintic (CQ) nonlinearity. Using the variational approximation and numerical methods, we. nd two branches of fundamental (single-humped) soliton solutions. The soliton characteristics, in the form of the integral power $Q$ (or width $w$) vs. the propagation constant $k$, reveal a strong bistability with two different solutions found for a given $k$. Violating the known Vakhitov–Kolokolov criterion, the solution branches with $dQ/dk>0$ and $dQ/dk<0$ are simultaneously stable. Various families of higher-order solitons are also found in the KP version of the model: symmetric and antisymmetric double-humped solitons, three-peak solitons with and without the phase shift $\pi$ between the peaks, etc. In a relatively shallow KP lattice, all the solitons belong to the semi-infinite gap beneath the linear band structure of the KP potential, while finite gaps between the bands remain empty (solitons in the finite gaps can be found if the lattice is much deeper). But in contrast to the situation known for the model combining a periodic potential and the self-focusing Kerr nonlinearity, the fundamental solitons fill only a finite zone near the top of the semi-infinite gap, which is a manifestation of the saturable character of the CQ nonlinearity.
Keywords: spatial solitons, Kronig–Penney model, Vakhitov–Kolokolov criterion.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 2, Pages 1157–1165
DOI: https://doi.org/10.1007/s11232-005-0145-3
Bibliographic databases:
Language: Russian
Citation: B. V. Gisin, R. Driben, B. A. Malomed, I. M. Merhasin, “Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity”, TMF, 144:2 (2005), 324–335; Theoret. and Math. Phys., 144:2 (2005), 1157–1165
Citation in format AMSBIB
\Bibitem{GisDriMal05}
\by B.~V.~Gisin, R.~Driben, B.~A.~Malomed, I.~M.~Merhasin
\paper Bistable Solitons in Single- and Multichannel Waveguides with the Cubic-Quintic Nonlinearity
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 324--335
\mathnet{http://mi.mathnet.ru/tmf1857}
\crossref{https://doi.org/10.4213/tmf1857}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195006}
\zmath{https://zbmath.org/?q=an:1178.35317}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1157G}
\elib{https://elibrary.ru/item.asp?id=17703441}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1157--1165
\crossref{https://doi.org/10.1007/s11232-005-0145-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232092900011}
Linking options:
  • https://www.mathnet.ru/eng/tmf1857
  • https://doi.org/10.4213/tmf1857
  • https://www.mathnet.ru/eng/tmf/v144/i2/p324
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :193
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024