|
Quadratic Integrals of Motion for Systems of Identical Particles: The Quantum Case
Y. Brihayea, C. Gonerab, P. Kosinskib, P. Maslankab, S. Gillerc a Université de Mons–Hainaut
b University of Łódź
c Pedagogical University of Częstochowa
Abstract:
We consider the quantum dynamical systems of identical particles admitting an additional integral quadratic in momenta and find that an appropriate ordering procedure exists that allows converting the classical integrals into their quantum counterparts. We discuss the relation to the separation of variables in the Schrodinger equation.
Keywords:
quantum integrals of motion, Calogero–Sutherland–Moser models, separation of variables, $sl(2,\mathbb{R})$ symmetry.
Citation:
Y. Brihaye, C. Gonera, P. Kosinski, P. Maslanka, S. Giller, “Quadratic Integrals of Motion for Systems of Identical Particles: The Quantum Case”, TMF, 144:2 (2005), 290–294; Theoret. and Math. Phys., 144:2 (2005), 1128–1131
Linking options:
https://www.mathnet.ru/eng/tmf1853https://doi.org/10.4213/tmf1853 https://www.mathnet.ru/eng/tmf/v144/i2/p290
|
Statistics & downloads: |
Abstract page: | 320 | Full-text PDF : | 187 | References: | 38 | First page: | 1 |
|