Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 153–161
DOI: https://doi.org/10.4213/tmf1841
(Mi tmf1841)
 

This article is cited in 6 scientific papers (total in 6 papers)

Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in (2+1)(2+1) Dimensions

M. Palese

University of Torino
Full-text PDF (240 kB) Citations (6)
References:
Abstract: We solve the Backlund problem for both the compact and noncompact versions of the Ishimori (2+1)(2+1)-dimensional nonlinear spin model. In particular, we realize the arising Backlund algebra in the form of an infinite-dimensional loop Lie algebra of the Kac–Moody type.
Keywords: integrable systems, nonlinear spin models, prolongation algebras, Backlund transformations, Backlund–Cartan connections.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 1014–1021
DOI: https://doi.org/10.1007/s11232-005-0129-3
Bibliographic databases:
Language: Russian
Citation: M. Palese, “Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in (2+1)(2+1) Dimensions”, TMF, 144:1 (2005), 153–161; Theoret. and Math. Phys., 144:1 (2005), 1014–1021
Citation in format AMSBIB
\Bibitem{Pal05}
\by M.~Palese
\paper Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in $(2+1)$ Dimensions
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 153--161
\mathnet{http://mi.mathnet.ru/tmf1841}
\crossref{https://doi.org/10.4213/tmf1841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194269}
\zmath{https://zbmath.org/?q=an:1178.37103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1014P}
\elib{https://elibrary.ru/item.asp?id=17702866}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 1014--1021
\crossref{https://doi.org/10.1007/s11232-005-0129-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800017}
Linking options:
  • https://www.mathnet.ru/eng/tmf1841
  • https://doi.org/10.4213/tmf1841
  • https://www.mathnet.ru/eng/tmf/v144/i1/p153
  • This publication is cited in the following 6 articles:
    1. Palese M., Winterroth E., “Particle-Like, Dyx-Coaxial and Trix-Coaxial Lie Algebra Structures For a Multi-Dimensional Continuous Toda Type System”, Nucl. Phys. B, 960 (2020), 115187  crossref  mathscinet  isi
    2. Palese M., “Towers with Skeletons for the (2+1)-Dimensional Continuous Isotropic Heisenberg Spin Model”, Xxth International Conference on Integrable Systems and Quantum Symmetries (Isqs-20), Journal of Physics Conference Series, 411, eds. Burdik C., Navratil O., Posta S., IOP Publishing Ltd, 2013, 012024  crossref  isi  scopus  scopus
    3. Morozov O.I., “Contact Integrable Extensions and Differential Coverings for the Generalized (2+1)-Dimensional Dispersionless Dym Equation”, Cent. Eur. J. Math., 10:5 (2012), 1688–1697  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. Palese M., Winterroth E., “Constructing Towers with Skeletons From Open Lie Algebras and Integrability”, 7th International Conference on Quantum Theory and Symmetries (Qts7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012091  crossref  isi  scopus  scopus
    5. Wang Deng-Shan, “Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation”, Appl. Math. Comput., 216:4 (2010), 1349–1354  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Duan Xiao-Juan, Deng Ming, Zhao Wei-Zhong, Wu Ke, “The prolongation structure of the inhomogeneous equation of the reaction-diffusion type”, J. Phys. A, 40:14 (2007), 3831–3837  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :194
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025