Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 102–109
DOI: https://doi.org/10.4213/tmf1836
(Mi tmf1836)
 

This article is cited in 2 scientific papers (total in 2 papers)

Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation

B. G. Konopelchenko, A. Moro

Lecce University
Full-text PDF (345 kB) Citations (2)
References:
Abstract: A new model of light propagation through a so-called weakly three-dimensional Cole-Cole nonlinear medium with short-range nonlocality was recently proposed. In particular, it was shown that in the geometric optics limit, the model is integrable and is governed by the dispersionless Veselov–Novikov (dVN) equation. The Burgers–Hopf equation can be obtained as a ($1+1$)-dimensional reduction of the dVN equation. We discuss its properties in the specific context of nonlinear geometric optics and consider an illustrative explicit example.
Keywords: nonlinear optics, integrable systems.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 968–974
DOI: https://doi.org/10.1007/s11232-005-0124-8
Bibliographic databases:
Language: Russian
Citation: B. G. Konopelchenko, A. Moro, “Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation”, TMF, 144:1 (2005), 102–109; Theoret. and Math. Phys., 144:1 (2005), 968–974
Citation in format AMSBIB
\Bibitem{KonMor05}
\by B.~G.~Konopelchenko, A.~Moro
\paper Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers--Hopf Equation
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 102--109
\mathnet{http://mi.mathnet.ru/tmf1836}
\crossref{https://doi.org/10.4213/tmf1836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194264}
\zmath{https://zbmath.org/?q=an:1178.78012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144..968K}
\elib{https://elibrary.ru/item.asp?id=17702861}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 968--974
\crossref{https://doi.org/10.1007/s11232-005-0124-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800012}
Linking options:
  • https://www.mathnet.ru/eng/tmf1836
  • https://doi.org/10.4213/tmf1836
  • https://www.mathnet.ru/eng/tmf/v144/i1/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:463
    Full-text PDF :202
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024