Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 83–93
DOI: https://doi.org/10.4213/tmf1834
(Mi tmf1834)
 

This article is cited in 7 scientific papers (total in 7 papers)

Hamiltonian Flows on Euler-Type Equations

A. V. Kiselevab

a Brock University
b Ivanovo State Power University
Full-text PDF (293 kB) Citations (7)
References:
Abstract: We analyze properties of Hamiltonian symmetry flows on hyperbolic Euler–Liouville-type equations EEL. We obtain the description of their Noether symmetries assigned to the integrals of these equations. The integrals provide Miura transformations from EEL to the multicomponent wave equations E. Using these substitutions, we generate an infinite-Hamiltonian commutative subalgebra A of local Noether symmetry flows on E proliferated by weakly nonlocal recursion operators. We demonstrate that the correspondence between the Magri schemes for A and for the induced “modified” Hamiltonian flows BsymEEL is such that these properties are transferred to B and the recursions for EEL are factored. We consider two examples associated with the two-dimensional Toda lattice.
Keywords: two-dimensional Toda lattice, KdV equation, Boussinesq equation, Miura transformation, commutative hierarchies.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 952–960
DOI: https://doi.org/10.1007/s11232-005-0122-x
Bibliographic databases:
Language: Russian
Citation: A. V. Kiselev, “Hamiltonian Flows on Euler-Type Equations”, TMF, 144:1 (2005), 83–93; Theoret. and Math. Phys., 144:1 (2005), 952–960
Citation in format AMSBIB
\Bibitem{Kis05}
\by A.~V.~Kiselev
\paper Hamiltonian Flows on Euler-Type Equations
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 83--93
\mathnet{http://mi.mathnet.ru/tmf1834}
\crossref{https://doi.org/10.4213/tmf1834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194262}
\zmath{https://zbmath.org/?q=an:1178.37065}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144..952K}
\elib{https://elibrary.ru/item.asp?id=17702859}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 952--960
\crossref{https://doi.org/10.1007/s11232-005-0122-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800010}
\elib{https://elibrary.ru/item.asp?id=13478238}
Linking options:
  • https://www.mathnet.ru/eng/tmf1834
  • https://doi.org/10.4213/tmf1834
  • https://www.mathnet.ru/eng/tmf/v144/i1/p83
  • This publication is cited in the following 7 articles:
    1. Kiselev A.V. Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213  crossref  mathscinet  isi  scopus  scopus
    2. Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (Qts7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058  crossref  isi  scopus  scopus
    3. A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784  mathnet  crossref  crossref  adsnasa  isi
    4. A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Kiselev, AV, “A family of second Lie algebra structures for symmetries of a dispersionless Boussinesq system”, Journal of Physics A-Mathematical and Theoretical, 42:40 (2009), 404011  crossref  mathscinet  zmath  isi  scopus  scopus
    6. A. V. Kiselev, “Algebraic properties of Gardner's deformations for integrable systems”, Theoret. and Math. Phys., 152:1 (2007), 963–976  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Karasu A, Kiselev AV, “Gardner's deformations of the Boussinesq equations”, Journal of Physics A-Mathematical and General, 39:37 (2006), 11453–11460  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :214
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025