Abstract:
We consider a wedge dislocation in the framework of elasticity theory and the geometric theory of defects. We show that the geometric theory quantitatively reproduces all the results of elasticity theory in the linear approximation. The coincidence is achieved by introducing a postulate that the vielbein satisfying the Einstein equations must also satisfy the gauge condition, which in the linear approximation leads to the elasticity equations for the displacement vector field. The gauge condition depends on the Poisson ratio, which can be experimentally measured. This indicates the existence of a privileged reference frame, which denies the relativity principle.
Citation:
M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, TMF, 135:2 (2003), 338–352; Theoret. and Math. Phys., 135:2 (2003), 733–744
\Bibitem{Kat03}
\by M.~O.~Katanaev
\paper Wedge Dislocation in the Geometric Theory of Defects
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 338--352
\mathnet{http://mi.mathnet.ru/tmf183}
\crossref{https://doi.org/10.4213/tmf183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008768}
\zmath{https://zbmath.org/?q=an:1178.74021}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 733--744
\crossref{https://doi.org/10.1023/A:1023687003017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400014}
Linking options:
https://www.mathnet.ru/eng/tmf183
https://doi.org/10.4213/tmf183
https://www.mathnet.ru/eng/tmf/v135/i2/p338
This publication is cited in the following 34 articles:
F. L. Carneiro, B. C. C. Carneiro, D. L. Azevedo, S. C. Ulhoa, “On Nanocones as Gravitational Analog Systems”, Annalen der Physik, 2025
Takahiro Yajima, Hiroyuki Nagahama, “Geometric structures of micropolar continuum with elastic and plastic deformations based on generalized Finsler space”, Mathematics and Mechanics of Solids, 29:2 (2024), 327
N. Candemir, A.N. Özdemir, “Linear and nonlinear optical properties in a GaAs quantum dot with disclination under magnetic field and Aharonov-Bohm flux field”, Physics Letters A, 492 (2023), 129226
Mikhail O. Katanaev, Alexander V. Mark, “Combined Screw and Wedge Dislocations”, Universe, 9:12 (2023), 500–14
Nicolás Fernández, Pierre Pujol, Mario Solís, Teófilo Vargas, “Revisiting the electronic properties of disclinated graphene sheets”, Eur. Phys. J. B, 96:6 (2023)
A. V. Mark, “Cylindrical dislocation in a nonlinear elastic incompressible material”, J. Appl. Mech. Tech. Phys., 63:4 (2022), 702–710
A. Manapany, L. Moueddene, B. Berche, S. Fumeron, “Diffusion in the presence of a chiral topological defect”, Eur. Phys. J. B, 95:7 (2022)
M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Proc. Steklov Inst. Math., 313 (2021), 78–98
Yajima T., Nagahama H., “Connection Structures of Topological Singularity in Micromechanics From a Viewpoint of Generalized Finsler Space”, Ann. Phys.-Berlin, 532:12 (2020), 2000306, 2000306
Zare S., Hassanabadi H., de Montigny M., “Duffin-Kemmer-Petiau Oscillator in the Presence of a Cosmic Screw Dislocation”, Int. J. Mod. Phys. A, 35:30 (2020), 2050195
Katanaev M.O., “The `T Hooft-Polyakov Monopole in the Geometric Theory of Defects”, Mod. Phys. Lett. B, 34:12 (2020), 2050126
Katanaev M.O. Volkov B.O., “Point Disclinations in the Chern-Simons Geometric Theory of Defects”, Mod. Phys. Lett. B, 34:1 (2020), 2150012
M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133
Yajima T., Yamasaki K., Nagahama H., “Non-Holonomic Geometric Structures of Rigid Body System in Riemann-Cartan Space”, J. Phys. Commun., 2:8 (2018), UNSP 085008
Katanaev M.O., “Chern–Simons Term in the Geometric Theory of Defects”, Phys. Rev. D, 96:8 (2017), 084054
Katanaev M.O., “Rotational Elastic Waves in a Cylindrical Waveguide With Wedge Dislocation”, J. Phys. A-Math. Theor., 49:8 (2016), 085202
Yajima T., Nagahama H., “Finsler geometry of topological singularities for multi-valued fields: Applications to continuum theory of defects”, Ann. Phys.-Berlin, 528:11-12 (2016), 845–851
Boehmer C.G., Tamanini N., “Rotational Elasticity and Couplings To Linear Elasticity”, Math. Mech. Solids, 20:8 (2015), 959–974
Katanaev M.O., “Rotational Elastic Waves in Double Wall Tube”, Phys. Lett. A, 379:24-25 (2015), 1544–1548
Katanaev M.O., Mannanov I.G., “Wedge Dislocations, Three-Dimensional Gravity, and the Riemann–Hilbert Problem”, Phys. Part. Nuclei, 43:5 (2012), 639–643