Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 2, Pages 338–352
DOI: https://doi.org/10.4213/tmf183
(Mi tmf183)
 

This article is cited in 34 scientific papers (total in 34 papers)

Wedge Dislocation in the Geometric Theory of Defects

M. O. Katanaev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider a wedge dislocation in the framework of elasticity theory and the geometric theory of defects. We show that the geometric theory quantitatively reproduces all the results of elasticity theory in the linear approximation. The coincidence is achieved by introducing a postulate that the vielbein satisfying the Einstein equations must also satisfy the gauge condition, which in the linear approximation leads to the elasticity equations for the displacement vector field. The gauge condition depends on the Poisson ratio, which can be experimentally measured. This indicates the existence of a privileged reference frame, which denies the relativity principle.
Keywords: dislocation, Riemann–Cartan geometry.
Received: 20.05.2002
Revised: 02.09.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 2, Pages 733–744
DOI: https://doi.org/10.1023/A:1023687003017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, TMF, 135:2 (2003), 338–352; Theoret. and Math. Phys., 135:2 (2003), 733–744
Citation in format AMSBIB
\Bibitem{Kat03}
\by M.~O.~Katanaev
\paper Wedge Dislocation in the Geometric Theory of Defects
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 338--352
\mathnet{http://mi.mathnet.ru/tmf183}
\crossref{https://doi.org/10.4213/tmf183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008768}
\zmath{https://zbmath.org/?q=an:1178.74021}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 733--744
\crossref{https://doi.org/10.1023/A:1023687003017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400014}
Linking options:
  • https://www.mathnet.ru/eng/tmf183
  • https://doi.org/10.4213/tmf183
  • https://www.mathnet.ru/eng/tmf/v135/i2/p338
  • This publication is cited in the following 34 articles:
    1. F. L. Carneiro, B. C. C. Carneiro, D. L. Azevedo, S. C. Ulhoa, “On Nanocones as Gravitational Analog Systems”, Annalen der Physik, 2025  crossref
    2. Takahiro Yajima, Hiroyuki Nagahama, “Geometric structures of micropolar continuum with elastic and plastic deformations based on generalized Finsler space”, Mathematics and Mechanics of Solids, 29:2 (2024), 327  crossref
    3. N. Candemir, A.N. Özdemir, “Linear and nonlinear optical properties in a GaAs quantum dot with disclination under magnetic field and Aharonov-Bohm flux field”, Physics Letters A, 492 (2023), 129226  crossref
    4. Mikhail O. Katanaev, Alexander V. Mark, “Combined Screw and Wedge Dislocations”, Universe, 9:12 (2023), 500–14  mathnet  crossref
    5. Nicolás Fernández, Pierre Pujol, Mario Solís, Teófilo Vargas, “Revisiting the electronic properties of disclinated graphene sheets”, Eur. Phys. J. B, 96:6 (2023)  crossref
    6. A. V. Mark, “Cylindrical dislocation in a nonlinear elastic incompressible material”, J. Appl. Mech. Tech. Phys., 63:4 (2022), 702–710  mathnet  crossref  crossref  elib
    7. A. Manapany, L. Moueddene, B. Berche, S. Fumeron, “Diffusion in the presence of a chiral topological defect”, Eur. Phys. J. B, 95:7 (2022)  crossref
    8. M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Proc. Steklov Inst. Math., 313 (2021), 78–98  mathnet  crossref  crossref  isi  elib
    9. Yajima T., Nagahama H., “Connection Structures of Topological Singularity in Micromechanics From a Viewpoint of Generalized Finsler Space”, Ann. Phys.-Berlin, 532:12 (2020), 2000306, 2000306  crossref  mathscinet  isi
    10. Zare S., Hassanabadi H., de Montigny M., “Duffin-Kemmer-Petiau Oscillator in the Presence of a Cosmic Screw Dislocation”, Int. J. Mod. Phys. A, 35:30 (2020), 2050195  crossref  mathscinet  isi  scopus
    11. Katanaev M.O., “The `T Hooft-Polyakov Monopole in the Geometric Theory of Defects”, Mod. Phys. Lett. B, 34:12 (2020), 2050126  crossref  mathscinet  isi
    12. Katanaev M.O. Volkov B.O., “Point Disclinations in the Chern-Simons Geometric Theory of Defects”, Mod. Phys. Lett. B, 34:1 (2020), 2150012  crossref  mathscinet  isi
    13. M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. Yajima T., Yamasaki K., Nagahama H., “Non-Holonomic Geometric Structures of Rigid Body System in Riemann-Cartan Space”, J. Phys. Commun., 2:8 (2018), UNSP 085008  crossref  mathscinet  isi  scopus
    15. Katanaev M.O., “Chern–Simons Term in the Geometric Theory of Defects”, Phys. Rev. D, 96:8 (2017), 084054  crossref  mathscinet  isi  scopus  scopus
    16. Katanaev M.O., “Rotational Elastic Waves in a Cylindrical Waveguide With Wedge Dislocation”, J. Phys. A-Math. Theor., 49:8 (2016), 085202  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    17. Yajima T., Nagahama H., “Finsler geometry of topological singularities for multi-valued fields: Applications to continuum theory of defects”, Ann. Phys.-Berlin, 528:11-12 (2016), 845–851  crossref  mathscinet  zmath  isi  scopus
    18. Boehmer C.G., Tamanini N., “Rotational Elasticity and Couplings To Linear Elasticity”, Math. Mech. Solids, 20:8 (2015), 959–974  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Katanaev M.O., “Rotational Elastic Waves in Double Wall Tube”, Phys. Lett. A, 379:24-25 (2015), 1544–1548  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    20. Katanaev M.O., Mannanov I.G., “Wedge Dislocations, Three-Dimensional Gravity, and the Riemann–Hilbert Problem”, Phys. Part. Nuclei, 43:5 (2012), 639–643  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :304
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025