Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 2, Pages 338–352
DOI: https://doi.org/10.4213/tmf183
(Mi tmf183)
 

This article is cited in 33 scientific papers (total in 33 papers)

Wedge Dislocation in the Geometric Theory of Defects

M. O. Katanaev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider a wedge dislocation in the framework of elasticity theory and the geometric theory of defects. We show that the geometric theory quantitatively reproduces all the results of elasticity theory in the linear approximation. The coincidence is achieved by introducing a postulate that the vielbein satisfying the Einstein equations must also satisfy the gauge condition, which in the linear approximation leads to the elasticity equations for the displacement vector field. The gauge condition depends on the Poisson ratio, which can be experimentally measured. This indicates the existence of a privileged reference frame, which denies the relativity principle.
Keywords: dislocation, Riemann–Cartan geometry.
Received: 20.05.2002
Revised: 02.09.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 2, Pages 733–744
DOI: https://doi.org/10.1023/A:1023687003017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, TMF, 135:2 (2003), 338–352; Theoret. and Math. Phys., 135:2 (2003), 733–744
Citation in format AMSBIB
\Bibitem{Kat03}
\by M.~O.~Katanaev
\paper Wedge Dislocation in the Geometric Theory of Defects
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 338--352
\mathnet{http://mi.mathnet.ru/tmf183}
\crossref{https://doi.org/10.4213/tmf183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008768}
\zmath{https://zbmath.org/?q=an:1178.74021}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 733--744
\crossref{https://doi.org/10.1023/A:1023687003017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400014}
Linking options:
  • https://www.mathnet.ru/eng/tmf183
  • https://doi.org/10.4213/tmf183
  • https://www.mathnet.ru/eng/tmf/v135/i2/p338
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :286
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024