Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 14–25
DOI: https://doi.org/10.4213/tmf1827
(Mi tmf1827)
 

This article is cited in 15 scientific papers (total in 15 papers)

Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians

R. Contea, M. Musetteb, C. Verhoevenb

a CEA, Service de Physique Théorique
b Vrije Universiteit
References:
Abstract: The quartic Henon–Heiles Hamiltonian passes the Painleve test for only four sets of values of the constants. Only one of these, identical to the traveling-wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the other three have not yet been integrated in the general case (α,β,γ)(0,0,0)(α,β,γ)(0,0,0). We integrate them by building a birational transformation to two fourth-order first-degree equations in the Cosgrove classiffication of polynomial equations that have the Painleve property. This transformation involves the stationary reduction of various partial differential equations. The result is the same as for the three cubic Henon–Heiles Hamiltonians, namely, a general solution that is meromorphic and hyperelliptic with genus two in all four quartic cases. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painleve integrability (the completeness property).
Keywords: Henon–Heiles Hamiltonian, Painleve property, hyperelliptic separation of variables.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 888–898
DOI: https://doi.org/10.1007/s11232-005-0115-9
Bibliographic databases:
Language: Russian
Citation: R. Conte, M. Musette, C. Verhoeven, “Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians”, TMF, 144:1 (2005), 14–25; Theoret. and Math. Phys., 144:1 (2005), 888–898
Citation in format AMSBIB
\Bibitem{ConMusVer05}
\by R.~Conte, M.~Musette, C.~Verhoeven
\paper Completeness of the Cubic and Quartic Henon--Heiles Hamiltonians
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 14--25
\mathnet{http://mi.mathnet.ru/tmf1827}
\crossref{https://doi.org/10.4213/tmf1827}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194255}
\zmath{https://zbmath.org/?q=an:1178.37057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144..888C}
\elib{https://elibrary.ru/item.asp?id=17702852}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 888--898
\crossref{https://doi.org/10.1007/s11232-005-0115-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1827
  • https://doi.org/10.4213/tmf1827
  • https://www.mathnet.ru/eng/tmf/v144/i1/p14
  • This publication is cited in the following 15 articles:
    1. Hai Zhang, Kai Wu, Delong Wang, “Two-dimensional integrable systems with position-dependent mass via complex holomorphic functions”, J. Phys. A: Math. Theor., 56:48 (2023), 485203  crossref
    2. Integrable Systems, 2022, 293  crossref
    3. El Fakkousy I., Kharbach J., Chatar W., Benkhali M., Rezzouk A., Ouazzani-Jamil M., “Liouvillian Integrability of the Three-Dimensional Generalized Henon-Heiles Hamiltonian”, Eur. Phys. J. Plus, 135:7 (2020), 612  crossref  mathscinet  isi  scopus
    4. Ángel Ballesteros, Alfonso Blasco, Francisco J. Herranz, Integrability, Supersymmetry and Coherent States, 2019, 1  crossref
    5. Lesfari A., “Geometric Study of a Family of Integrable Systems”, Int. Electron. J. Geom., 11:1 (2018), 78–92  crossref  mathscinet  isi
    6. Ballesteros A., Blasco A., Herranz F.J., Musso F., “An Integrable Henon-Heiles System on the Sphere and the Hyperbolic Plane”, Nonlinearity, 28:11 (2015), 3789–3801  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    7. Ángel Ballesteros, Alfonso Blasco, Francisco J Herranz, “A curved Hénon—Heiles system and its integrable perturbations”, J. Phys.: Conf. Ser., 597 (2015), 012013  crossref
    8. Simon S., “Conditions and Evidence For Non-Integrability in the Friedmann-Robertson-Walker Hamiltonian”, J. Nonlinear Math. Phys., 21:1 (2014), 1–16  crossref  mathscinet  adsnasa  isi  scopus  scopus
    9. Lakshmanan M., Chandrasekar V.K., “Generating Finite Dimensional Integrable Nonlinear Dynamical Systems”, Eur. Phys. J.-Spec. Top., 222:3-4 (2013), 665–688  crossref  isi  scopus  scopus
    10. Fre P., Sagnotti A., Sorin A.S., “Integrable Scalar Cosmologies I. Foundations and Links with String Theory”, Nucl. Phys. B, 877:3 (2013), 1028–1106  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    11. Blasco A., Ballesteros A., Musso F., “Integrable Perturbations of Henon-Heiles Systems From Poisson Coalgebras”, XX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1460, eds. Linan M., Barbero F., DeDiego D., Amer Inst Physics, 2012, 159–163  crossref  adsnasa  isi
    12. Zhao Jun-xiao, Conte R., “A connection between HH3 and Korteweg-de Vries with one source”, J. Math. Phys., 51:3 (2010), 033511, 6 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. Ballesteros A., Blasco A., “Integrable Henon-Heiles Hamiltonians: A Poisson algebra approach”, Ann Physics, 325:12 (2010), 2787–2799  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    14. Lesfari A., “Cyclic coverings of abelian varieties and the generalized Yang-Mills system for a field with gauge group SU(2)”, Int. J. Geom. Methods Mod. Phys., 5:6 (2008), 947–961  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Conte R., Musette M., Verhoeven C., “Explicit integration of the Henon-Heiles Hamiltonians”, Journal of Nonlinear Mathematical Physics, 12 (2005), 212–227, Suppl. 1  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:674
    Full-text PDF :249
    References:105
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025