Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 1, Pages 14–25
DOI: https://doi.org/10.4213/tmf1827
(Mi tmf1827)
 

This article is cited in 15 scientific papers (total in 15 papers)

Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians

R. Contea, M. Musetteb, C. Verhoevenb

a CEA, Service de Physique Théorique
b Vrije Universiteit
References:
Abstract: The quartic Henon–Heiles Hamiltonian passes the Painleve test for only four sets of values of the constants. Only one of these, identical to the traveling-wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the other three have not yet been integrated in the general case $(\alpha,\beta,\gamma)\neq(0,0,0)$. We integrate them by building a birational transformation to two fourth-order first-degree equations in the Cosgrove classiffication of polynomial equations that have the Painleve property. This transformation involves the stationary reduction of various partial differential equations. The result is the same as for the three cubic Henon–Heiles Hamiltonians, namely, a general solution that is meromorphic and hyperelliptic with genus two in all four quartic cases. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painleve integrability (the completeness property).
Keywords: Henon–Heiles Hamiltonian, Painleve property, hyperelliptic separation of variables.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 1, Pages 888–898
DOI: https://doi.org/10.1007/s11232-005-0115-9
Bibliographic databases:
Language: Russian
Citation: R. Conte, M. Musette, C. Verhoeven, “Completeness of the Cubic and Quartic Henon–Heiles Hamiltonians”, TMF, 144:1 (2005), 14–25; Theoret. and Math. Phys., 144:1 (2005), 888–898
Citation in format AMSBIB
\Bibitem{ConMusVer05}
\by R.~Conte, M.~Musette, C.~Verhoeven
\paper Completeness of the Cubic and Quartic Henon--Heiles Hamiltonians
\jour TMF
\yr 2005
\vol 144
\issue 1
\pages 14--25
\mathnet{http://mi.mathnet.ru/tmf1827}
\crossref{https://doi.org/10.4213/tmf1827}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194255}
\zmath{https://zbmath.org/?q=an:1178.37057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144..888C}
\elib{https://elibrary.ru/item.asp?id=17702852}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 1
\pages 888--898
\crossref{https://doi.org/10.1007/s11232-005-0115-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231408800003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1827
  • https://doi.org/10.4213/tmf1827
  • https://www.mathnet.ru/eng/tmf/v144/i1/p14
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:640
    Full-text PDF :232
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024