Abstract:
We obtain formulas for resonances and eigenvalues embedded in the continuous spectrum that are similar to formulas in the standard perturbation theory. We prove that although the imaginary part of the first-order correction to the eigenvalue embedded in the continuous spectrum is zero, the perturbed eigenfunction, as a rule, ceases to be square-summable.
Citation:
Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, TMF, 143:3 (2005), 417–430; Theoret. and Math. Phys., 143:3 (2005), 836–847
\Bibitem{Chu05}
\by Yu.~P.~Chuburin
\paper Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
\jour TMF
\yr 2005
\vol 143
\issue 3
\pages 417--430
\mathnet{http://mi.mathnet.ru/tmf1822}
\crossref{https://doi.org/10.4213/tmf1822}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2163808}
\zmath{https://zbmath.org/?q=an:1178.35145}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..836C}
\elib{https://elibrary.ru/item.asp?id=17702878}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 3
\pages 836--847
\crossref{https://doi.org/10.1007/s11232-005-0109-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230528300007}
Linking options:
https://www.mathnet.ru/eng/tmf1822
https://doi.org/10.4213/tmf1822
https://www.mathnet.ru/eng/tmf/v143/i3/p417
This publication is cited in the following 3 articles:
Kondej S., “Straight Quantum Layer With Impurities Inducing Resonances”, J. Phys. A-Math. Theor., 50:31 (2017), 315203
Kondej S., “Resonances Induced by Broken Symmetry in a System with a Singular Potential”, Ann. Henri Poincare, 13:6 (2012), 1451–1467
Yu. P. Chuburin, “Decay law for a quasistationary state of the Schrödinger operator for a crystal film”, Theoret. and Math. Phys., 151:2 (2007), 648–658