Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 143, Number 3, Pages 417–430
DOI: https://doi.org/10.4213/tmf1822
(Mi tmf1822)
 

This article is cited in 3 scientific papers (total in 3 papers)

Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (266 kB) Citations (3)
References:
Abstract: We obtain formulas for resonances and eigenvalues embedded in the continuous spectrum that are similar to formulas in the standard perturbation theory. We prove that although the imaginary part of the first-order correction to the eigenvalue embedded in the continuous spectrum is zero, the perturbed eigenfunction, as a rule, ceases to be square-summable.
Keywords: Schrodinger operator, perturbation theory, resonance, eigenvalue.
Received: 08.09.2004
Revised: 24.01.2005
English version:
Theoretical and Mathematical Physics, 2005, Volume 143, Issue 3, Pages 836–847
DOI: https://doi.org/10.1007/s11232-005-0109-7
Bibliographic databases:
Language: Russian
Citation: Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, TMF, 143:3 (2005), 417–430; Theoret. and Math. Phys., 143:3 (2005), 836–847
Citation in format AMSBIB
\Bibitem{Chu05}
\by Yu.~P.~Chuburin
\paper Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film
\jour TMF
\yr 2005
\vol 143
\issue 3
\pages 417--430
\mathnet{http://mi.mathnet.ru/tmf1822}
\crossref{https://doi.org/10.4213/tmf1822}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2163808}
\zmath{https://zbmath.org/?q=an:1178.35145}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..836C}
\elib{https://elibrary.ru/item.asp?id=17702878}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 3
\pages 836--847
\crossref{https://doi.org/10.1007/s11232-005-0109-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230528300007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1822
  • https://doi.org/10.4213/tmf1822
  • https://www.mathnet.ru/eng/tmf/v143/i3/p417
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024