Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 143, Number 2, Pages 278–304
DOI: https://doi.org/10.4213/tmf1815
(Mi tmf1815)
 

This article is cited in 10 scientific papers (total in 10 papers)

Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

G. A. Alekseev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We show that for the fields depending on only two of the four space-time coordinates, the spaces of local solutions of various integrable reductions of Einstein's field equations are the subspaces of the spaces of local solutions of the “null-curvature” equations selected by universal (i.e., solution-independent conditions imposed on the canonical (Jordan) forms of the desired matrix variables. Each of these spaces of solutions can be parameterized by a finite set of holomorphic functions of the spectral parameter, which can be interpreted as a complete set of the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. We show that both the direct and inverse problems of such a map, i.e., the problem of finding the monodromy data for any local solution of the null-curvature equations for the given Jordan forms and also of proving the existence and uniqueness of such a solution for arbitrary monodromy data, can be solved unambiguously (the “monodromy transform”). We derive the linear singular integral equations solving the inverse problem and determine the explicit forms of the monodromy data corresponding to the spaces of solutions of Einstein's field equations.
Keywords: Einstein's equations, string gravity, integrability, singular integral equations, monodromy.
Received: 09.09.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 143, Issue 2, Pages 720–740
DOI: https://doi.org/10.1007/s11232-005-0101-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. A. Alekseev, “Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations”, TMF, 143:2 (2005), 278–304; Theoret. and Math. Phys., 143:2 (2005), 720–740
Citation in format AMSBIB
\Bibitem{Ale05}
\by G.~A.~Alekseev
\paper Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
\jour TMF
\yr 2005
\vol 143
\issue 2
\pages 278--304
\mathnet{http://mi.mathnet.ru/tmf1815}
\crossref{https://doi.org/10.4213/tmf1815}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165900}
\zmath{https://zbmath.org/?q=an:1178.83010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..720A}
\elib{https://elibrary.ru/item.asp?id=9135964}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 2
\pages 720--740
\crossref{https://doi.org/10.1007/s11232-005-0101-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229686400007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1815
  • https://doi.org/10.4213/tmf1815
  • https://www.mathnet.ru/eng/tmf/v143/i2/p278
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024