Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 143, Number 1, Pages 83–111
DOI: https://doi.org/10.4213/tmf1805
(Mi tmf1805)
 

This article is cited in 18 scientific papers (total in 18 papers)

WKB method for the Dirac equation with a scalar-vector coupling

V. Yu. Lazur, A. K. Reity, V. V. Rubish

Uzhgorod National University
References:
Abstract: We outline a recursive method for obtaining WKB expansions of solutions of the Dirac equation in an external centrally symmetric field with a scalar-vector Lorentz structure of the interaction potentials. We obtain semiclassical formulas for radial functions in the classically allowed and forbidden regions and find conditions for matching them in passing through the turning points. We generalize the Bohr–Sommerfeld quantization rule to the relativistic case where a spin-1/2 particle interacts simultaneously with a scalar and an electrostatic external field. We obtain a general expression in the semiclassical approximation for the width of quasistationary levels, which was earlier known only for barrier-type electrostatic potentials (the Gamow formula). We show that the obtained quantization rule exactly produces the energy spectrum for Coulomb- and oscillatory-type potentials. We use an example of the funnel potential to demonstrate that the proposed version of the WKB method not only extends the possibilities for studying the spectrum of energies and wave functions analytically but also ensures an appropriate accuracy of calculations even for states with nr1.
Keywords: Dirac equation, Lorentz structure of interaction potential, WKB method, effective potential, quantization condition, level width, potential models.
Received: 04.08.2004
Revised: 15.10.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 143, Issue 1, Pages 559–582
DOI: https://doi.org/10.1007/s11232-005-0090-1
Bibliographic databases:
Language: Russian
Citation: V. Yu. Lazur, A. K. Reity, V. V. Rubish, “WKB method for the Dirac equation with a scalar-vector coupling”, TMF, 143:1 (2005), 83–111; Theoret. and Math. Phys., 143:1 (2005), 559–582
Citation in format AMSBIB
\Bibitem{LazReiRub05}
\by V.~Yu.~Lazur, A.~K.~Reity, V.~V.~Rubish
\paper WKB method for the Dirac equation with a scalar-vector coupling
\jour TMF
\yr 2005
\vol 143
\issue 1
\pages 83--111
\mathnet{http://mi.mathnet.ru/tmf1805}
\crossref{https://doi.org/10.4213/tmf1805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170057}
\zmath{https://zbmath.org/?q=an:1178.81082}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..559L}
\elib{https://elibrary.ru/item.asp?id=9132047}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 1
\pages 559--582
\crossref{https://doi.org/10.1007/s11232-005-0090-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229249500007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1805
  • https://doi.org/10.4213/tmf1805
  • https://www.mathnet.ru/eng/tmf/v143/i1/p83
  • This publication is cited in the following 18 articles:
    1. I. O. Nimyi, V. Könye, S. G. Sharapov, V. P. Gusynin, “Landau level collapse in graphene in the presence of in-plane radial electric and perpendicular magnetic fields”, Phys. Rev. B, 106:8 (2022)  crossref
    2. P. Grashin, K. Sveshnikov, “Vacuum polarization energy decline and spontaneous positron emission in QED under Coulomb supercriticality”, Phys. Rev. D, 106:1 (2022)  crossref
    3. Martinez D., Reyes J.A., Reyes G., Avendano C.G., “Band Structure For Relativistic Charge Carriers Submitted to a Helical Magnetic Field”, Int. J. Mod. Phys. A, 36:19 (2021), 2150141  crossref  mathscinet  isi
    4. Andre G. Campos, Renan Cabrera, “Nondispersive analytical solutions to the Dirac equation”, Phys. Rev. Research, 2:1 (2020)  crossref
    5. Campos A.G., Cabrera R., Rabitz H.A., Bondar D.I., “Analytic Solutions to Coherent Control of the Dirac Equation”, Phys. Rev. Lett., 119:17 (2017), 173203  crossref  isi  scopus  scopus
    6. Liang Sh.-J., Ang L.K., “Chiral Tunneling-Assisted Over-Barrier Electron Emission From Graphene”, IEEE Trans. Electron Devices, 61:6, SI (2014), 1764–1770  crossref  adsnasa  isi  scopus  scopus
    7. Liang Sh.-J., Sun S., Ang L.K., “Over-Barrier Side-Band Electron Emission From Graphene with a Time-Oscillating Potential”, Carbon, 61 (2013), 294–298  crossref  isi  elib  scopus  scopus
    8. Liang Sh., Ang L.K., “Electron Over-Barrier Emission Mechanism of Single Layer Graphene”, 2013 IEEE 14th International Vacuum Electronics Conference (Ivec), IEEE, 2013  adsnasa  isi
    9. Shijun Liang, L. K. Ang, 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), 2013, 1  crossref
    10. B. A. Zon, A. S. Kornev, “Semiclassical approximation of the Dirac equation in a central field”, Theoret. and Math. Phys., 171:1 (2012), 478–489  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    11. Sun S., Ang L.K., “Shot Noise of Low Energy Electron Field Emission Due to Klein Tunneling”, J. Appl. Phys., 112:1 (2012), 016104  crossref  mathscinet  adsnasa  isi  scopus  scopus
    12. Lazur V.Yu., Reity O.K., Rubish V.V., “Quasiclassical theory of the Dirac equation with a scalar-vector interaction and its applications in the physics of heavy-light mesons”, Phys. Rev. D, 83:7 (2011), 076003, 23 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    13. Sun S., Ang L.K., Shiffler D., Luginsland J.W., “Klein tunnelling model of low energy electron field emission from single-layer graphene sheet”, Applied Physics Letters, 99:1 (2011), 013112  crossref  adsnasa  isi  elib  scopus  scopus
    14. Lazur V.Yu., Reity O.K., Rubish V.V., “Spherical model of the Stark effect in external scalar and vector fields”, Int. J. Mod. Phys. A, 25:16 (2010), 3235–3259  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    15. Alhaidari A.D., “Relativistic Coulomb Problem for Z Larger Than 137”, Internat J Modern Phys A, 25:18–19 (2010), 3703–3714  crossref  zmath  adsnasa  isi  scopus  scopus
    16. Esposito, G, “On the phase-integral method for the radial Dirac equation”, Journal of Physics A-Mathematical and Theoretical, 42:39 (2009), 395203  crossref  mathscinet  zmath  isi  scopus  scopus
    17. V. Yu. Lazur, A. K. Reity, V. V. Rubish, “Semiclassical approximation in the relativistic potential model of B and D mesons”, Theoret. and Math. Phys., 155:3 (2008), 825–847  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    18. Van Orden, JW, “Scaling of Dirac fermions and the WKB approximation”, Physical Review D, 72:5 (2005), 054020  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:2041
    Full-text PDF :400
    References:137
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025