Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 143, Number 1, Pages 83–111
DOI: https://doi.org/10.4213/tmf1805
(Mi tmf1805)
 

This article is cited in 18 scientific papers (total in 18 papers)

WKB method for the Dirac equation with a scalar-vector coupling

V. Yu. Lazur, A. K. Reity, V. V. Rubish

Uzhgorod National University
References:
Abstract: We outline a recursive method for obtaining WKB expansions of solutions of the Dirac equation in an external centrally symmetric field with a scalar-vector Lorentz structure of the interaction potentials. We obtain semiclassical formulas for radial functions in the classically allowed and forbidden regions and find conditions for matching them in passing through the turning points. We generalize the Bohr–Sommerfeld quantization rule to the relativistic case where a spin-1/2 particle interacts simultaneously with a scalar and an electrostatic external field. We obtain a general expression in the semiclassical approximation for the width of quasistationary levels, which was earlier known only for barrier-type electrostatic potentials (the Gamow formula). We show that the obtained quantization rule exactly produces the energy spectrum for Coulomb- and oscillatory-type potentials. We use an example of the funnel potential to demonstrate that the proposed version of the WKB method not only extends the possibilities for studying the spectrum of energies and wave functions analytically but also ensures an appropriate accuracy of calculations even for states with $n_r\backsim1$.
Keywords: Dirac equation, Lorentz structure of interaction potential, WKB method, effective potential, quantization condition, level width, potential models.
Received: 04.08.2004
Revised: 15.10.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 143, Issue 1, Pages 559–582
DOI: https://doi.org/10.1007/s11232-005-0090-1
Bibliographic databases:
Language: Russian
Citation: V. Yu. Lazur, A. K. Reity, V. V. Rubish, “WKB method for the Dirac equation with a scalar-vector coupling”, TMF, 143:1 (2005), 83–111; Theoret. and Math. Phys., 143:1 (2005), 559–582
Citation in format AMSBIB
\Bibitem{LazReiRub05}
\by V.~Yu.~Lazur, A.~K.~Reity, V.~V.~Rubish
\paper WKB method for the Dirac equation with a scalar-vector coupling
\jour TMF
\yr 2005
\vol 143
\issue 1
\pages 83--111
\mathnet{http://mi.mathnet.ru/tmf1805}
\crossref{https://doi.org/10.4213/tmf1805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170057}
\zmath{https://zbmath.org/?q=an:1178.81082}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...143..559L}
\elib{https://elibrary.ru/item.asp?id=9132047}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 1
\pages 559--582
\crossref{https://doi.org/10.1007/s11232-005-0090-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229249500007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1805
  • https://doi.org/10.4213/tmf1805
  • https://www.mathnet.ru/eng/tmf/v143/i1/p83
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1989
    Full-text PDF :380
    References:121
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024