|
This article is cited in 1 scientific paper (total in 1 paper)
Gauge Theory Solitons on the Noncommutative Cylinder
S. V. Demidova, S. L. Dubovskiib, V. A. Rubakovb, S. M. Sibiryakovb a Moscow Institute of Physics and Technology
b Institute for Nuclear Research, Russian Academy of Sciences
Abstract:
The solution-generating technique originally suggested for gauge theories on the noncommutative plane is generalized to the noncommutative cylinder. For this, we construct partial isometry operators and a complete set of orthogonal projection operators in the algebra ${\mathcal A}_{\text{\rm C}}$ of the cylinder, and an isomorphism between the free module ${\mathcal A}_{\text{\rm C}}$ and its direct sum ${\mathcal A}_{\text{\rm C}}\oplus{\mathcal F}_{\text{\rm C}}$ with the Fock module on the cylinder. We explicitly construct the gauge theory soliton and evaluate the spectrum of perturbations about this soliton.
Keywords:
noncommutative field theory, gauge theory, solitons.
Received: 10.02.2003
Citation:
S. V. Demidov, S. L. Dubovskii, V. A. Rubakov, S. M. Sibiryakov, “Gauge Theory Solitons on the Noncommutative Cylinder”, TMF, 138:2 (2004), 319–337; Theoret. and Math. Phys., 138:2 (2004), 269–283
Linking options:
https://www.mathnet.ru/eng/tmf18https://doi.org/10.4213/tmf18 https://www.mathnet.ru/eng/tmf/v138/i2/p319
|
Statistics & downloads: |
Abstract page: | 522 | Full-text PDF : | 227 | References: | 80 | First page: | 3 |
|