Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 142, Number 3, Pages 419–488
DOI: https://doi.org/10.4213/tmf1792
(Mi tmf1792)
 

This article is cited in 30 scientific papers (total in 30 papers)

Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model

A. S. Alexandrovab, A. D. Mironovca, A. Yu. Morozova

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Moscow Institute of Physics and Technology
c P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: Although matrix model partition functions do not exhaust the entire set of $\tau$-functions relevant for string theory, they are elementary blocks for constructing many other $\tau$-functions and seem to capture the fundamental nature of quantum gravity an string theory properly. We propose taking matrix model partition functions as new special functions. This means that they should be investigated and represented in some standard form without reference to particular applications. At the same time, the tables and lists of properties should be sufficiently full to exclude unexpected peculiarities appearing in new applications. Accomplishing this task requires considerable effort, and this paper is only a first step in this direction. We restrict our consideration to the finite Hermitian one-matrix model an concentrate mostly on its phase and branch structure that arises when the partition function is considered as a $D$-module. We discuss the role of the CIV-DV prepotential (which generates a certain basis in the linear space of solutions of the Virasoro constraints, although an understanding of why and how this basis is distinguished is lacking) an evaluate several first multiloop correlators, which generalize the semicircular distribution to the case of multitrace and nonplanar correlators.
Keywords: matrix models, string theory, multiloop correlators.
Received: 16.04.2004
English version:
Theoretical and Mathematical Physics, 2005, Volume 142, Issue 3, Pages 349–411
DOI: https://doi.org/10.1007/s11232-005-0031-z
Bibliographic databases:
Language: Russian
Citation: A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model”, TMF, 142:3 (2005), 419–488; Theoret. and Math. Phys., 142:3 (2005), 349–411
Citation in format AMSBIB
\Bibitem{AleMirMor05}
\by A.~S.~Alexandrov, A.~D.~Mironov, A.~Yu.~Morozov
\paper Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model
\jour TMF
\yr 2005
\vol 142
\issue 3
\pages 419--488
\mathnet{http://mi.mathnet.ru/tmf1792}
\crossref{https://doi.org/10.4213/tmf1792}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165901}
\zmath{https://zbmath.org/?q=an:1178.81208}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...142..349A}
\elib{https://elibrary.ru/item.asp?id=9132034}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 142
\issue 3
\pages 349--411
\crossref{https://doi.org/10.1007/s11232-005-0031-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228416900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1792
  • https://doi.org/10.4213/tmf1792
  • https://www.mathnet.ru/eng/tmf/v142/i3/p419
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:992
    Full-text PDF :354
    References:128
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024