Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 1, Pages 3–54
DOI: https://doi.org/10.4213/tmf178
(Mi tmf178)
 

This article is cited in 9 scientific papers (total in 9 papers)

Generalized Informational Entropy and Noncanonical Distribution in Equilibrium Statistical Mechanics

Yu. G. Rudoi

Peoples Friendship University of Russia
Full-text PDF (483 kB) Citations (9)
References:
Abstract: Based on the Jaynes principle of maximum for informational entropy, we find a generalized probability distribution and construct a generalized equilibrium statistical mechanics (ESM) for a wide class of objects to which the usual (canonical) ESM cannot be applied. We consistently consider the case of a continuous, not discrete, random variable characterizing the state of the object. For large values of the argument, the resulting distribution is characterized by a power-law, not exponential, asymptotic behavior, and the corresponding power asymptotic expression agrees with the empirical laws established for these objects. The $\varepsilon$-deformed Boltzmann–Gibbs–Shannon functional satisfying the requirements of the entropy axiomatics and leading to the canonical ESM for $\varepsilon=0$ is used as the original entropy functional. We also consider nonlinear transformations of this functional. We show that depending on how the averages of the dynamical characteristics of the object are defined, the different (Tsallis, Renyi, and Hardy–Littlewood–Pólya) versions of the generalized ESM can be used, and we give their comparative analysis. We find conditions under which the Gibbs–Helmholtz thermodynamic relations hold and the Legendre transformation can be applied to the generalized entropy and the Massieu–Planck function. We consider the Tsallis and Renyi ESM versions in detail for the case of a one-dimensional probabilistic object with a single dynamical characteristic whose role is played by a generalized positive “energy” with a monotonic power growth. We obtain constraints on the Renyi index under which the equilibrium distribution relates to a definite class of stable Gaussian or Levy–Khinchin distributions.
Keywords: Shannon entropy, Renyi entropy, Tsallis entropy, Levy–Khinchin distribution, Jaynes maximum entropy principle, equilibrium statistical mechanics.
Received: 21.11.2001
Revised: 05.07.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 1, Pages 451–496
DOI: https://doi.org/10.1023/A:1023200618075
Bibliographic databases:
Language: Russian
Citation: Yu. G. Rudoi, “Generalized Informational Entropy and Noncanonical Distribution in Equilibrium Statistical Mechanics”, TMF, 135:1 (2003), 3–54; Theoret. and Math. Phys., 135:1 (2003), 451–496
Citation in format AMSBIB
\Bibitem{Rud03}
\by Yu.~G.~Rudoi
\paper Generalized Informational Entropy and Noncanonical Distribution in Equilibrium Statistical Mechanics
\jour TMF
\yr 2003
\vol 135
\issue 1
\pages 3--54
\mathnet{http://mi.mathnet.ru/tmf178}
\crossref{https://doi.org/10.4213/tmf178}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1997649}
\zmath{https://zbmath.org/?q=an:1178.82006}
\elib{https://elibrary.ru/item.asp?id=13445026}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 1
\pages 451--496
\crossref{https://doi.org/10.1023/A:1023200618075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183054500001}
Linking options:
  • https://www.mathnet.ru/eng/tmf178
  • https://doi.org/10.4213/tmf178
  • https://www.mathnet.ru/eng/tmf/v135/i1/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:3090
    Full-text PDF :971
    References:121
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025