Abstract:
We discuss chirality-preserving nilpotent deformations of the four-dimensional N=(1,1) Euclidean harmonic superspace and their implications in N=(1,1) supersymmetric gauge and hypermultiplet theories. For the SO(4)×SU(2)-invariant deformation, we present nonanticommutative Euclidean analogues of the N=2 gauge multiplet and hypermultiplet off-shell actions. As a new result, we consider a specific nonanticommutative hypermultiplet model with the N=(1,0) supersymmetry. It involves free scalar fields and interacting right-handed spinor fields.
Citation:
E. A. Ivanov, B. M. Zupnik, “Nonanticommutative deformations of N=(1,1) supersymmetric theories”, TMF, 142:2 (2005), 235–251; Theoret. and Math. Phys., 142:2 (2005), 197–210
This publication is cited in the following 9 articles:
Gama F.S., Nascimento J.R., Petrov A.Yu., “On the alternative formulation of the three-dimensional noncommutative superspace”, Int. J. Mod. Phys. A, 31:10 (2016), 1650055
Bork L.V., Kazakov D.I., Vlasenko D.E., “On the Amplitudes in N = (1,1) D=6 SYM”, J. High Energy Phys., 2013, no. 11, 065
Buchbinder IL, Ivanov EA, Lechtenfeld O, et al, “Gauge theory in deformed N = (1,1) superspace”, Physics of Particles and Nuclei, 39:5 (2008), 759–797
B. M. Zupnik, “Deformations of Euclidean supersymmetries”, Theoret. and Math. Phys., 147:2 (2006), 670–686
Buchbinder IL, Lechtenfeld O, Samsonov IB, “Vector-multiplet effective action in the non-anticommutative charged hypermultiplet model”, Nuclear Physics B, 758:1–2 (2006), 185–203
De Castro A, Quevedo L, “Non-singlet Q-deformed Nu = (1,0) and Nu = (1,1/2) U(1) actions”, Physics Letters B, 639:2 (2006), 117–123
Buchbinder IL, Ivanov EA, Lechtenfeld O, et al, “Renormalizability of nonanticommutative N = (1,1) theories with singlet deformation”, Nuclear Physics B, 740:3 (2006), 358–385
Ito K, Nakajima H, “Central charges in non(anti)commutative N=2 supersymmetric U(N) gauge theory”, Physics Letters B, 633:6 (2006), 776–782
Ito, K, “Non(anti)commutative N=2 supersymmetric U (N) gauge theory and deformed instanton equations”, Physics Letters B, 629:2–4 (2005), 93