Abstract:
We present algorithms for singular spectrum analysis and local approximation methods used to extrapolate time series. We analyze the advantages and disadvantages of these methods and consider the peculiarities of applying them to various systems. Based on this analysis, we propose a generalization of the local approximation method that makes it suitable for forecasting very noisy time series. We present the results of numerical simulations illustrating the possibilities of the proposed method.
Keywords:
time series, forecast, chaos, local approximation.
Citation:
I. A. Istomin, O. L. Kotlyarov, A. Yu. Loskutov, “The problem of processing time series: Extending possibilities of the local approximation method using singular spectrum analysis”, TMF, 142:1 (2005), 148–159; Theoret. and Math. Phys., 142:1 (2005), 128–137
\Bibitem{IstKotLos05}
\by I.~A.~Istomin, O.~L.~Kotlyarov, A.~Yu.~Loskutov
\paper The problem of processing time series: Extending possibilities of the local approximation method using singular spectrum analysis
\jour TMF
\yr 2005
\vol 142
\issue 1
\pages 148--159
\mathnet{http://mi.mathnet.ru/tmf1771}
\crossref{https://doi.org/10.4213/tmf1771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2137425}
\zmath{https://zbmath.org/?q=an:1178.37116}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...142..128I}
\elib{https://elibrary.ru/item.asp?id=9135940}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 142
\issue 1
\pages 128--137
\crossref{https://doi.org/10.1007/s11232-005-0077-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227111300012}
Linking options:
https://www.mathnet.ru/eng/tmf1771
https://doi.org/10.4213/tmf1771
https://www.mathnet.ru/eng/tmf/v142/i1/p148
This publication is cited in the following 9 articles:
Alexandr Volvach, Galina Kurbasova, Larisa Volvach, “Wavelets in the analysis of local time series of the Earth's surface air”, Heliyon, 10:1 (2024), e23237
V. N. Efanov, N. S. Ivanova, “Expert System for Assessing the Technical Status of Gas Turbine Engines Using the Knowledge Base of Temporal Precedents”, Russ. Aeronaut., 66:1 (2023), 64
V. N. Efanov, N. S. Ivanova, 2023 International Ural Conference on Electrical Power Engineering (UralCon), 2023, 628
D. A. Anikeev, G. O. Penkin, V. V. Strizhov, “Klassifikatsiya fizicheskoi aktivnosti cheloveka s pomoschyu lokalnykh approksimiruyuschikh modelei”, Inform. i ee primen., 13:1 (2019), 40–48
Krutikov V.N., Indenko O.N., Chernova E.S., 2018 International Scientific Multi-Conference on Industrial Engineering and Modern Technologies (Fareastcon), IEEE, 2018
Vladimir N. Krutikov, Oksana N. Indenko, Ekaterina S. Chernova, 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2018, 1
Xie H.-B., Guo T., Sivakumar B., Liew A.W.-Ch., Dokos S., “Symplectic Geometry Spectrum Analysis of Nonlinear Time Series”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 470:2170 (2014), 20140409
Mirmomeni M., Lucas C., Araabi B.N., Moshiri B., Bidar M.R., “Recursive spectral analysis of natural time series based on eigenvector matrix perturbation for online applications”, Iet Signal Processing, 5:6 (2011), 515–526
A. Yu. Loskutov, “Fascination of chaos”, Phys. Usp., 53:12 (2010), 1257–1280