Abstract:
The development of p-adic quantum mechanics has made it necessary to construct a probability theory in which the probabilities of events are p-adic numbers. The foundations of this theory are developed here. The frequency definition of probability is used. A general principle of statistical stabilization of relative frequencies is formulated. By virtue of this principle, statistical stabilization of relative frequencies, which are, like all experimental data, rational numbers, can be considered not only in the real topology but also inp-adic topologies.
Citation:
A. Yu. Khrennikov, “p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies”, TMF, 97:3 (1993), 348–363; Theoret. and Math. Phys., 97:3 (1993), 1340–1348
\Bibitem{Khr93}
\by A.~Yu.~Khrennikov
\paper $p$-Adic probability theory and its applications. The principle of statistical stabilization of frequencies
\jour TMF
\yr 1993
\vol 97
\issue 3
\pages 348--363
\mathnet{http://mi.mathnet.ru/tmf1744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257875}
\zmath{https://zbmath.org/?q=an:0839.60005}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 3
\pages 1340--1348
\crossref{https://doi.org/10.1007/BF01015763}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NL72600003}
Linking options:
https://www.mathnet.ru/eng/tmf1744
https://www.mathnet.ru/eng/tmf/v97/i3/p348
This publication is cited in the following 20 articles:
Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Quantum mechanics on a p-adic Hilbert space: Foundations and prospects”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)
Mohammad Azim Mohd Azahari, Mohd Ali Khameini Ahmad, Nor Muhainiah Mohd Ali, Proceedings of the International Conference on Mathematical Sciences and Statistics 2022 (ICMSS 2022), 2023, 24
Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Trace class operators and states in p-adic quantum mechanics”, Journal of Mathematical Physics, 64:5 (2023)
Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “A p-Adic Model of Quantum States and the p-Adic Qubit”, Entropy, 25:1 (2022), 86
Stefano Gogioso, Nicola Pinzani, “The Sheaf-Theoretic Structure of Definite Causality”, Electron. Proc. Theor. Comput. Sci., 343 (2021), 301
Ahmad Mohd Ali Khameini Liao L. Saburov M., “Periodic P-Adic Gibbs Measures of Q-State Potts Model on Cayley Trees i: the Chaos Implies the Vastness of the Set of P-Adic Gibbs Measures”, J. Stat. Phys., 171:6 (2018), 1000–1034
J. Acacio de Barros, Gary Oas, The Frontiers Collection, The Map and the Territory, 2018, 325
José de Barros, Federico Holik, Décio Krause, “Contextuality and Indistinguishability”, Entropy, 19:9 (2017), 435
J. Acacio de Barros, Gary Oas, The Palgrave Handbook of Quantum Models in Social Science, 2017, 195
J. Acacio de Barros, Janne V. Kujala, Gary Oas, “Negative probabilities and contextuality”, Journal of Mathematical Psychology, 74 (2016), 34
Rachid S., “Stable Random Field With P-Adic-Time and Spectral Density Estimation”, 2015 International Conference on Electrical and Electronics: Techniques and Applications (Eeta 2015), Destech Publications, Inc, 2015, 273–279
V. M. Maximov, “Multidimensional and abstract probability”, Proc. Steklov Inst. Math., 287:1 (2014), 174–201
J Acacio de Barros, G Oas, “Negative probabilities and counter-factual reasoning in quantum cognition”, Phys. Scr., T163 (2014), 014008
E. I. Zelenov, “Models of $p$-adic mechanics”, Theoret. and Math. Phys., 174:2 (2013), 247–252
A. Yu. Khrennikov, Sh. Yamada, “On the concept of random sequence with respect
to $p$-adic valued probabilities”, Theory Probab. Appl., 49:1 (2005), 65–76
N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$”, Theoret. and Math. Phys., 130:3 (2002), 425–431
A. Yu. Khrennikov, “Interpretations of Probability and Their $p$-Adic Extensions”, Theory Probab. Appl., 46:2 (2002), 256–273
A. Yu. Khrennikov, “Laws of large numbers in non-Archimedean probability theory”, Izv. Math., 64:1 (2000), 207–219
S. A. Albeverio, P. E. Kloeden, A. Yu. Khrennikov, “Human memory as a $p$-adic dynamic system”, Theoret. and Math. Phys., 117:3 (1998), 1414–1422