Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 97, Number 3, Pages 348–363 (Mi tmf1744)  

This article is cited in 20 scientific papers (total in 20 papers)

p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies

A. Yu. Khrennikov

Moscow State Institute of Electronic Technology (Technical University)
References:
Abstract: The development of p-adic quantum mechanics has made it necessary to construct a probability theory in which the probabilities of events are p-adic numbers. The foundations of this theory are developed here. The frequency definition of probability is used. A general principle of statistical stabilization of relative frequencies is formulated. By virtue of this principle, statistical stabilization of relative frequencies, which are, like all experimental data, rational numbers, can be considered not only in the real topology but also inp-adic topologies.
Received: 23.11.1992
English version:
Theoretical and Mathematical Physics, 1993, Volume 97, Issue 3, Pages 1340–1348
DOI: https://doi.org/10.1007/BF01015763
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, “p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies”, TMF, 97:3 (1993), 348–363; Theoret. and Math. Phys., 97:3 (1993), 1340–1348
Citation in format AMSBIB
\Bibitem{Khr93}
\by A.~Yu.~Khrennikov
\paper $p$-Adic probability theory and its applications. The principle of statistical stabilization of frequencies
\jour TMF
\yr 1993
\vol 97
\issue 3
\pages 348--363
\mathnet{http://mi.mathnet.ru/tmf1744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257875}
\zmath{https://zbmath.org/?q=an:0839.60005}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 3
\pages 1340--1348
\crossref{https://doi.org/10.1007/BF01015763}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NL72600003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1744
  • https://www.mathnet.ru/eng/tmf/v97/i3/p348
  • This publication is cited in the following 20 articles:
    1. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Quantum mechanics on a p-adic Hilbert space: Foundations and prospects”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)  crossref
    2. Mohammad Azim Mohd Azahari, Mohd Ali Khameini Ahmad, Nor Muhainiah Mohd Ali, Proceedings of the International Conference on Mathematical Sciences and Statistics 2022 (ICMSS 2022), 2023, 24  crossref
    3. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Trace class operators and states in p-adic quantum mechanics”, Journal of Mathematical Physics, 64:5 (2023)  crossref
    4. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “A p-Adic Model of Quantum States and the p-Adic Qubit”, Entropy, 25:1 (2022), 86  crossref
    5. Stefano Gogioso, Nicola Pinzani, “The Sheaf-Theoretic Structure of Definite Causality”, Electron. Proc. Theor. Comput. Sci., 343 (2021), 301  crossref
    6. Ahmad Mohd Ali Khameini Liao L. Saburov M., “Periodic P-Adic Gibbs Measures of Q-State Potts Model on Cayley Trees i: the Chaos Implies the Vastness of the Set of P-Adic Gibbs Measures”, J. Stat. Phys., 171:6 (2018), 1000–1034  crossref  isi
    7. J. Acacio de Barros, Gary Oas, The Frontiers Collection, The Map and the Territory, 2018, 325  crossref
    8. José de Barros, Federico Holik, Décio Krause, “Contextuality and Indistinguishability”, Entropy, 19:9 (2017), 435  crossref
    9. J. Acacio de Barros, Gary Oas, The Palgrave Handbook of Quantum Models in Social Science, 2017, 195  crossref
    10. J. Acacio de Barros, Janne V. Kujala, Gary Oas, “Negative probabilities and contextuality”, Journal of Mathematical Psychology, 74 (2016), 34  crossref
    11. Rachid S., “Stable Random Field With P-Adic-Time and Spectral Density Estimation”, 2015 International Conference on Electrical and Electronics: Techniques and Applications (Eeta 2015), Destech Publications, Inc, 2015, 273–279  isi
    12. V. M. Maximov, “Multidimensional and abstract probability”, Proc. Steklov Inst. Math., 287:1 (2014), 174–201  mathnet  crossref  crossref  isi  elib  elib
    13. J Acacio de Barros, G Oas, “Negative probabilities and counter-factual reasoning in quantum cognition”, Phys. Scr., T163 (2014), 014008  crossref
    14. E. I. Zelenov, “Models of $p$-adic mechanics”, Theoret. and Math. Phys., 174:2 (2013), 247–252  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. Yu. Khrennikov, Sh. Yamada, “On the concept of random sequence with respect to $p$-adic valued probabilities”, Theory Probab. Appl., 49:1 (2005), 65–76  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. Khrennikov A., Ludkovsky S., “Non-archimedean stochastic processes”, Ultrametric Functional Analysis, Contemporary Mathematics Series, 319, 2003, 139–157  crossref  isi
    17. N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$”, Theoret. and Math. Phys., 130:3 (2002), 425–431  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    18. A. Yu. Khrennikov, “Interpretations of Probability and Their $p$-Adic Extensions”, Theory Probab. Appl., 46:2 (2002), 256–273  mathnet  mathnet  crossref  crossref  isi
    19. A. Yu. Khrennikov, “Laws of large numbers in non-Archimedean probability theory”, Izv. Math., 64:1 (2000), 207–219  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. S. A. Albeverio, P. E. Kloeden, A. Yu. Khrennikov, “Human memory as a $p$-adic dynamic system”, Theoret. and Math. Phys., 117:3 (1998), 1414–1422  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:857
    Full-text PDF :277
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025