Abstract:
A special solution of the Kadomtsev–Petviashvili equation utx+uxxxx+3uyy+3(u2)xx=0, that is a “nonlinear” analog of the special function of wave catastrophe corresponding to a singularity of swallowtail type is considered. On the basis of a symmetry analysis it is shown that the solution must simultaneously satisfy nonlinear ordinary differential equations with respect to all three independent variables. After “dressing” of the corresponding Ψ function, equations with respect to a spectral parameter arise in a regular manner, and this indicates the possibility of applying the method of isomonodromic deformation.
Citation:
B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, TMF, 97:2 (1993), 213–226; Theoret. and Math. Phys., 97:2 (1993), 1250–1258
\Bibitem{SulHab93}
\by B.~I.~Suleimanov, I.~T.~Habibullin
\paper Symmetries of Kadomtsev--Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes
\jour TMF
\yr 1993
\vol 97
\issue 2
\pages 213--226
\mathnet{http://mi.mathnet.ru/tmf1734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257867}
\zmath{https://zbmath.org/?q=an:0801.35127}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 2
\pages 1250--1258
\crossref{https://doi.org/10.1007/BF01016870}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NK68000004}
Linking options:
https://www.mathnet.ru/eng/tmf1734
https://www.mathnet.ru/eng/tmf/v97/i2/p213
This publication is cited in the following 6 articles:
B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics
of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106
B. I. Suleimanov, “On Analogs of Wave Catastrophe Functions that are Solutions of Nonlinear Integrable Equations”, J Math Sci, 258:1 (2021), 81
B. I. Suleimanov, “Ob analogakh funktsii volnovykh katastrof, yavlyayuschikhsya resheniyami nelineinykh integriruemykh uravnenii”, Differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 81–95
B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Letters, 106:6 (2017), 400–405
R. N. Garifullin, B. I. Suleimanov, “From weak discontinuities to nondissipative shock waves”, J. Exp. Theor. Phys., 110:1 (2010), 133
V.R. Kudashev, B.I. Suleimanov, “The effect of small dissipation on the onset of one-dimensional shock waves”, Journal of Applied Mathematics and Mechanics, 65:3 (2001), 441