Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 101, Number 3, Pages 369–373 (Mi tmf1693)  

Spatially distributed classical Lagrangian mechanics

E. I. Bogdanov

Elabuga State Pedagogical Institute
References:
Abstract: It is well known that the existence of two nontrivial integrals of the motion makes it possible to parametrize the motion of a Lagrangian rigid body by two variables. On the basis of this fact it is shown that certain combinations of the quantities that characterize the trajectory of such a body satisfy well-known nonlinear equations: sine–Gordon, Korteweg–de Vries, Klein–Gordon, and nonlinear Schrödinger equation.
Received: 10.12.1992
Revised: 11.03.1994
English version:
Theoretical and Mathematical Physics, 1994, Volume 101, Issue 3, Pages 1419–1421
DOI: https://doi.org/10.1007/BF01035462
Bibliographic databases:
Language: Russian
Citation: E. I. Bogdanov, “Spatially distributed classical Lagrangian mechanics”, TMF, 101:3 (1994), 369–373; Theoret. and Math. Phys., 101:3 (1994), 1419–1421
Citation in format AMSBIB
\Bibitem{Bog94}
\by E.~I.~Bogdanov
\paper Spatially distributed classical Lagrangian mechanics
\jour TMF
\yr 1994
\vol 101
\issue 3
\pages 369--373
\mathnet{http://mi.mathnet.ru/tmf1693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348606}
\zmath{https://zbmath.org/?q=an:0854.70006}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 3
\pages 1419--1421
\crossref{https://doi.org/10.1007/BF01035462}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994RG57000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1693
  • https://www.mathnet.ru/eng/tmf/v101/i3/p369
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024