Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 101, Number 2, Pages 282–293 (Mi tmf1685)  

This article is cited in 6 scientific papers (total in 6 papers)

Renormalization group in a fermionic hierarchical model

É. Yu. Lerner, M. D. Missarov

Kazan State University
Full-text PDF (907 kB) Citations (6)
References:
Abstract: A study is made of a hierarchical model with spin values in a Grassmann algebra defined by a potential of general form. The action of the spin-block renormalization group in the space of Hamiltonians is reduced to a rational mapping of the space of coupling constants into itself. The methods of the theory of bifurcations are used to investigate the nontrivial fixed points of this mapping. A theorem establishing the existence of a thermodynamic limit of the model at these points in a certain neighborhood of a bifurcation value is proved.
Received: 27.10.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 101, Issue 2, Pages 1353–1360
DOI: https://doi.org/10.1007/BF01018283
Bibliographic databases:
Language: Russian
Citation: É. Yu. Lerner, M. D. Missarov, “Renormalization group in a fermionic hierarchical model”, TMF, 101:2 (1994), 282–293; Theoret. and Math. Phys., 101:2 (1994), 1353–1360
Citation in format AMSBIB
\Bibitem{LerMis94}
\by \'E.~Yu.~Lerner, M.~D.~Missarov
\paper Renormalization group in a~fermionic hierarchical model
\jour TMF
\yr 1994
\vol 101
\issue 2
\pages 282--293
\mathnet{http://mi.mathnet.ru/tmf1685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348390}
\zmath{https://zbmath.org/?q=an:0960.47511}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 2
\pages 1353--1360
\crossref{https://doi.org/10.1007/BF01018283}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QY17400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf1685
  • https://www.mathnet.ru/eng/tmf/v101/i2/p282
  • This publication is cited in the following 6 articles:
    1. Ageev D.S., Bagrov A.A., Iliasov A.A., “Coleman-Weinberg Potential in P-Adic Field Theory”, Eur. Phys. J. C, 80:9 (2020), 859  crossref  isi
    2. Steven S Gubser, Christian Jepsen, Brian Trundy, “Spin in p -adic AdS/CFT”, J. Phys. A: Math. Theor., 52:14 (2019), 144004  crossref
    3. Gubser S.S., Parikh S., “Geodesic Bulk Diagrams on the Bruhat-Tits Tree”, Phys. Rev. D, 96:6 (2017), 066024  crossref  isi
    4. Y Meurice, “Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model”, J. Phys. A: Math. Theor., 40:23 (2007), R39  crossref
    5. R. G. Stepanov, “Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model”, Theoret. and Math. Phys., 146:2 (2006), 207–220  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. É. Yu. Lerner, M. D. Missarov, “Global flow of renormalization group and thermodynamic limit for the hierarchical fermionic model”, Theoret. and Math. Phys., 107:2 (1996), 579–588  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :122
    References:65
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025