Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 101, Number 2, Pages 235–252 (Mi tmf1682)  

This article is cited in 9 scientific papers (total in 9 papers)

Merging of eigenvalues and resonances of a two-particle Schrödinger operator

S. N. Lakaev, Sh. M. Tilavova

A. Navoi Samarkand State University
References:
Abstract: The existence of bound states and resonances for the two-particle discrete Schrödinger operator is proved. Their conjunction and the dependence of the quasimomentum and the coupling constant are studied.
Received: 28.12.1992
Revised: 08.09.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 101, Issue 2, Pages 1320–1331
DOI: https://doi.org/10.1007/BF01018280
Bibliographic databases:
Language: Russian
Citation: S. N. Lakaev, Sh. M. Tilavova, “Merging of eigenvalues and resonances of a two-particle Schrödinger operator”, TMF, 101:2 (1994), 235–252; Theoret. and Math. Phys., 101:2 (1994), 1320–1331
Citation in format AMSBIB
\Bibitem{LakTil94}
\by S.~N.~Lakaev, Sh.~M.~Tilavova
\paper Merging of eigenvalues and resonances of a~two-particle Schr\"odinger operator
\jour TMF
\yr 1994
\vol 101
\issue 2
\pages 235--252
\mathnet{http://mi.mathnet.ru/tmf1682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348387}
\zmath{https://zbmath.org/?q=an:0875.35089}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 2
\pages 1320--1331
\crossref{https://doi.org/10.1007/BF01018280}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QY17400007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1682
  • https://www.mathnet.ru/eng/tmf/v101/i2/p235
  • This publication is cited in the following 9 articles:
    1. Hiroshima F. Muminov Z. Kuljanov U., “Threshold of Discrete Schrodinger Operators With Delta Potentials on N-Dimensional Lattice”, Linear Multilinear Algebra, 70:5 (2022), 919–954  crossref  isi
    2. Muminov Z. Alladustov Sh. Lakaev Sh., “Spectral and Threshold Analysis of a Small Rank Perturbation of the Discrete Laplacian”, J. Math. Anal. Appl., 496:2 (2021), 124827  crossref  isi
    3. Zahriddin Muminov, Shukhrat Lakaev, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 050011  crossref
    4. S. N. Lakaev, S. Kh. Abdukhakimov, “Threshold effects in a two-fermion system on an optical lattice”, Theoret. and Math. Phys., 203:2 (2020), 648–663  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. M. I. Muminov, A. M. Khurramov, “On compact distribution of two-particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 59:6 (2015), 18–22  mathnet  crossref
    6. M. I. Muminov, A. M. Hurramov, “Spectral properties of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 177:3 (2013), 1693–1705  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. S. N. Lakaev, Sh. Yu. Kholmatov, “Asymptotics of the eigenvalues of a discrete Schrödinger operator with zero-range potential”, Izv. Math., 76:5 (2012), 946–966  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. S. N. Lakaev, I. N. Bozorov, “The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice”, Theoret. and Math. Phys., 158:3 (2009), 360–376  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Zh. I. Abdullaev, S. N. Lakaev, “Finiteness of discrete spectrum of three particle Schrödinger operator on the lattice”, Theoret. and Math. Phys., 111:1 (1997), 467–479  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :158
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025