Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 101, Number 2, Pages 179–188 (Mi tmf1677)  

This article is cited in 1 scientific paper (total in 1 paper)

Numerical computations of integrals over paths on Riemann surfaces of genus $N$

J.-E. Lee

National Chiao Tung University
Full-text PDF (787 kB) Citations (1)
References:
Abstract: This paper is a continuation of work by Forest and Lee [1,2]. In [1,2] it was proved that the function theory of periodic soliton solutions occurs on the Riemann surfaces $\Re$ of genus $N$, where the integrals over path on $\Re$ play the most fundamental role. In this paper a numerical method is developed to evaluate these integrals. Precisely, the aim is to develop a computational code for integrals of the form
$$ \displaystyle \int _{\gamma }\,f(z)\frac {dz}{R(z)},\qquad \text {or}\qquad \displaystyle \int _{\gamma }\, f(z)R(z)\,dz,$$
where $f(z)$ is any single-valued analytic function on the complex plane $\mathbf C$, and $R(z)$ is two-valued function on $\mathbf C$ of the form
$$ R^2(z)=\displaystyle \prod ^{2N+\delta }_{k=1}\,(z-z_0(k)),\qquad \delta =0\quad \text {or}\quad 1,$$
where $\bigl \{z_0(k),1\le k\le 2N+\delta \bigr \}$ are distinct complex numbers which play the role of the branch points of the Riemann surface $\Re =\bigl \{(z,R(z))\bigr \}$ of genus $N-1+\delta$. The integral path $\gamma$ is continuous on $\Re$. The numerical code is developed in “Mathematica” [3].
Received: 14.01.1994
English version:
Theoretical and Mathematical Physics, 1994, Volume 101, Issue 2, Pages 1281–1288
DOI: https://doi.org/10.1007/BF01018275
Bibliographic databases:
Language: Russian
Citation: J.-E. Lee, “Numerical computations of integrals over paths on Riemann surfaces of genus $N$”, TMF, 101:2 (1994), 179–188; Theoret. and Math. Phys., 101:2 (1994), 1281–1288
Citation in format AMSBIB
\Bibitem{Lee94}
\by J.-E.~Lee
\paper Numerical computations of integrals over paths on Riemann surfaces of genus $N$
\jour TMF
\yr 1994
\vol 101
\issue 2
\pages 179--188
\mathnet{http://mi.mathnet.ru/tmf1677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348384}
\zmath{https://zbmath.org/?q=an:0854.65021}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 2
\pages 1281--1288
\crossref{https://doi.org/10.1007/BF01018275}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QY17400002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1677
  • https://www.mathnet.ru/eng/tmf/v101/i2/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025