Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 100, Number 3, Pages 367–376 (Mi tmf1655)  

This article is cited in 32 scientific papers (total in 32 papers)

About the modification of the Painlevé test for systems of nonlinear partial differential equations

T. I. Garagash

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Following the formulation of [1] the Painlevé test is considered for the 2+1 dimensional model proposed in [2]. It is shown that for the model considered the standard ascending series procedure is correct only on the subset of solutions of the 1+1 dimensional reduction. The modified ascending series procedure is proposed giving a possibility to realize the procedure for a nonreduced case. Basing on this procedure, new representations of the Lax pair and the Backlund transformation are obtaioned. It is shown that the considered system is hamiltonian and some special (soliton's type) solutions are constructed.
Received: 14.10.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 100, Issue 3, Pages 1075–1081
DOI: https://doi.org/10.1007/BF01018572
Bibliographic databases:
Language: Russian
Citation: T. I. Garagash, “About the modification of the Painlevé test for systems of nonlinear partial differential equations”, TMF, 100:3 (1994), 367–376; Theoret. and Math. Phys., 100:3 (1994), 1075–1081
Citation in format AMSBIB
\Bibitem{Gar94}
\by T.~I.~Garagash
\paper About the modification of the Painlev\'e test for systems of nonlinear partial differential equations
\jour TMF
\yr 1994
\vol 100
\issue 3
\pages 367--376
\mathnet{http://mi.mathnet.ru/tmf1655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1311895}
\zmath{https://zbmath.org/?q=an:0875.35118}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 3
\pages 1075--1081
\crossref{https://doi.org/10.1007/BF01018572}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QP25500006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1655
  • https://www.mathnet.ru/eng/tmf/v100/i3/p367
  • This publication is cited in the following 32 articles:
    1. Diana S. Maltseva, Roman O. Popovych, “Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system”, Physica D: Nonlinear Phenomena, 460 (2024), 134081  crossref
    2. Stavros Kontogiorgis, Christodoulos Sophocleous, “The variable coefficient Boiti–Leon–Pempinelli and similar systems: The Lie symmetry approach”, Math Methods in App Sciences, 2024  crossref
    3. Xin-Yi Gao, “Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water”, Chinese Journal of Physics, 2024  crossref
    4. Serbay Duran, “Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method”, Opt Quant Electron, 53:6 (2021)  crossref
    5. Mukesh Kumar, Raj Kumar, Anshu Kumar, “Some More Invariant Solutions of (2 + 1)-Water Waves”, Int. J. Appl. Comput. Math, 7:1 (2021)  crossref
    6. 培源 易, “New Traveling Wave Solutions for Boiti-Leon-Pempinelle Equation”, AAM, 07:12 (2018), 1537  crossref
    7. Jun Liu, Gui Mu, Zhengde Dai, Hongying Luo, “Spatiotemporal deformation of multi-soliton to (2 + 1)-dimensional KdV equation”, Nonlinear Dyn, 83:1-2 (2016), 355  crossref
    8. Jinxi Fei, Zhengyi Ma, Yuanming Chen, “Symmetry reduction and explicit solutions of the (2+1)-dimensional Boiti–Leon–Pempinelli system”, Applied Mathematics and Computation, 268 (2015), 432  crossref
    9. Mukesh Kumar, Raj Kumar, Anshu Kumar, “Some more similarity solutions of the (2+1)-dimensional BLP system”, Computers & Mathematics with Applications, 70:3 (2015), 212  crossref
    10. Xin-Yi Gao, “Comment on “Solitons, Bäcklund transformation, and Lax pair for the (2 + 1)-dimensional Boiti-Leon- Pempinelli equation for the water waves” [J. Math. Phys. 51, 093519 (2010)]”, Journal of Mathematical Physics, 56:1 (2015)  crossref
    11. Ling Xu, Xuan Cheng, Chao-Qing Dai, “Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation”, Eur. Phys. J. Plus, 130:12 (2015)  crossref
    12. Yun-Hu Wang and Hui Wang, “Symmetry analysis and CTE solvability for the (2+1)-dimensional Boiti–Leon–Pempinelli equation”, Phys. Scr., 89:12 (2014), 125203  crossref
    13. Mukesh Kumar, Raj Kumar, “On New Similarity Solutions of the Boiti—Leon—Pempinelli System”, Commun. Theor. Phys., 61:1 (2014), 121  crossref
    14. Ben Gao, Zhiyong Zhang, Yufu Chen, “Type-II hidden symmetry and nonlinear self-adjointness of Boiti–Leon–Pempinelli equation”, Communications in Nonlinear Science and Numerical Simulation, 19:1 (2014), 29  crossref
    15. GUI MU, ZHENGDE DAI, ZHANHUI ZHAO, “Localized structures for (2+1)-dimensional Boiti–Leon–Pempinelli equation”, Pramana - J Phys, 81:3 (2013), 367  crossref
    16. Shpilevoi A.A., Yurov A.V., Gritsenko V.A., “Nelineinye dissipativnye struktury kak model dvumernykh opticheskikh solitonov”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta, 2012, no. 4, 14–20 Nonlinear dissipative structures as model of two-dimensional optic solitons  elib
    17. Chao-Qing Dai, Yue-Yue Wang, “Localized coherent structures based on variable separation solution of the (2+1)-dimensional Boiti–Leon–Pempinelli equation”, Nonlinear Dyn, 70:1 (2012), 189  crossref
    18. İsmail Aslan, “Application of the Exp-function method to the (2+1)-dimensional Boiti–Leon–Pempinelli equation using symbolic computation”, International Journal of Computer Mathematics, 88:4 (2011), 747  crossref
    19. Zheng Yang, Song-Hua Ma, Jian-Ping Fang, “Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti—Leon—Pempinelli system”, Chinese Phys. B, 20:6 (2011), 060506  crossref
    20. Yan Jiang, Bo Tian, Wen-Jun Liu, Min Li, Pan Wang, Kun Sun, “Solitons, Bäcklund transformation, and Lax pair for the (2+1)-dimensional Boiti–Leon–Pempinelli equation for the water waves”, Journal of Mathematical Physics, 51:9 (2010)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :195
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025