Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 100, Number 3, Pages 323–331 (Mi tmf1651)  

This article is cited in 9 scientific papers (total in 9 papers)

Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation

V. Ya. Raevskii

Institute of Metal Physics, Ural Division of the Russian Academy of Sciences
Full-text PDF (889 kB) Citations (9)
References:
Abstract: Some new properties of the double layer potential direct value on $S=\partial \Omega$ operator $B^*$ are proved. In particular the existence in $H^{1/2}(S)$ of a basis, consisting of $B^*$ eigen functions, is shown. Basing on these properties an equivalence of the vector integral equation
$$ \alpha \mathbf M(x)+\nabla \int _\Omega \mathbf M(y)\nabla _y|x-y|\,dy=\mathbf H(x), \qquad \alpha \geqslant 0,\quad \Omega \subset R^3,$$
to the known scalar equation with the operator $B^*$ is proved. This vector equation arisis in the integral formulation of the electro- and magnetostatic field problem. The properties of the left-hand side operator and solutions of the equation are investigated.
Received: 28.05.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 100, Issue 3, Pages 1040–1045
DOI: https://doi.org/10.1007/BF01018568
Bibliographic databases:
Language: Russian
Citation: V. Ya. Raevskii, “Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation”, TMF, 100:3 (1994), 323–331; Theoret. and Math. Phys., 100:3 (1994), 1040–1045
Citation in format AMSBIB
\Bibitem{Rae94}
\by V.~Ya.~Raevskii
\paper Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation
\jour TMF
\yr 1994
\vol 100
\issue 3
\pages 323--331
\mathnet{http://mi.mathnet.ru/tmf1651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1311891}
\zmath{https://zbmath.org/?q=an:0855.31002}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 3
\pages 1040--1045
\crossref{https://doi.org/10.1007/BF01018568}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QP25500002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1651
  • https://www.mathnet.ru/eng/tmf/v100/i3/p323
  • This publication is cited in the following 9 articles:
    1. Arpan Mukherjee, Mourad Sini, “Heat Generation Using Lorentzian Nanoparticles. The Full Maxwell System”, SIAM J. Appl. Math., 84:1 (2024), 285  crossref
    2. Arpan Mukherjee, Mourad Sini, “Time-dependent acoustic waves generated by multiple resonant bubbles: application to acoustic cavitation”, J. Evol. Equ., 24:4 (2024)  crossref
    3. Xinlin Cao, Ahcene Ghandriche, Mourad Sini, “The electromagnetic waves generated by a cluster of nanoparticles with high refractive indices”, Journal of London Math Soc, 108:4 (2023), 1531  crossref
    4. Arpan Mukherjee, Mourad Sini, “Acoustic Cavitation using Resonating MicroBubbles: Analysis in the Time-Domain”, SIAM J. Math. Anal., 55:5 (2023), 5575  crossref
    5. Arpan Mukherjee, Mourad Sini, “Heat Generation Using Lorentzian Nanoparticles: Estimation via Time-Domain Techniques”, Multiscale Model. Simul., 21:2 (2023), 542  crossref
    6. Ahcene Ghandriche, Mourad Sini, “Photo-acoustic inversion using plasmonic contrast agents: The full Maxwell model”, Journal of Differential Equations, 341 (2022), 1  crossref
    7. V. V. Dyakin, O. V. Kudryashova, V. Ya. Raevskii, “One approach to solving the basic equation of magnetostatics in the case of nonhomogeneous magnets”, Theoret. and Math. Phys., 187:1 (2016), 525–538  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Jaydeep P. Bardhan, Matthew G. Knepley, Mihai Anitescu, “Bounding the electrostatic free energies associated with linear continuum models of molecular solvation”, The Journal of Chemical Physics, 130:10 (2009)  crossref
    9. Comput. Math. Math. Phys., 39:4 (1999), 601–608  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :157
    References:68
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025