Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 100, Number 1, Pages 153–159 (Mi tmf1637)  

The stochastic approach for non-hamiltonian systems

R. Tzani

Universitat de Barcelona
References:
Abstract: The stochastic quantization of dissipative systems is discussed. It is shown that in order to stochastically quantize a system with dissipation, one has to restrict the Fourier transform of the space-time variable to the positive half domain in the complex plane. This breaks the time-reversal invariance, which manifests in the formulation through the resulting noninvariant forms for the propagators. The relation of the stochastic approach with the Caldeira and Leggett path-integral method is also analyzed.
English version:
Theoretical and Mathematical Physics, 1994, Volume 100, Issue 1, Pages 916–920
DOI: https://doi.org/10.1007/BF01017331
Bibliographic databases:
Language: Russian
Citation: R. Tzani, “The stochastic approach for non-hamiltonian systems”, TMF, 100:1 (1994), 153–159; Theoret. and Math. Phys., 100:1 (1994), 916–920
Citation in format AMSBIB
\Bibitem{Tza94}
\by R.~Tzani
\paper The stochastic approach for non-hamiltonian systems
\jour TMF
\yr 1994
\vol 100
\issue 1
\pages 153--159
\mathnet{http://mi.mathnet.ru/tmf1637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1305797}
\zmath{https://zbmath.org/?q=an:0854.58025}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 1
\pages 916--920
\crossref{https://doi.org/10.1007/BF01017331}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QC09900015}
Linking options:
  • https://www.mathnet.ru/eng/tmf1637
  • https://www.mathnet.ru/eng/tmf/v100/i1/p153
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024