Abstract:
The Davey–Stewartson equations are derived in a plasma system by the reductive perturbation method. Modulational instability of a plane wave is discussed including a finite ion temperature effect. Certain particular solutions of the equations are also obtained by means of a linearization technique. One of them shows “reconnection” of solitons. We show that this reconnectionsolution correspond to the resonant type of usual soliton solutions.
Citation:
K. Nishinari, K. Abe, J. Satsuma, “A new-type of soliton behavior of the Davey–Stewartson equations in a plasma system”, TMF, 99:3 (1994), 487–498; Theoret. and Math. Phys., 99:3 (1994), 745–753
\Bibitem{NisAbeSat94}
\by K.~Nishinari, K.~Abe, J.~Satsuma
\paper A~new-type of soliton behavior of the Davey--Stewartson equations in a~plasma system
\jour TMF
\yr 1994
\vol 99
\issue 3
\pages 487--498
\mathnet{http://mi.mathnet.ru/tmf1614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308815}
\zmath{https://zbmath.org/?q=an:0853.76098}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 3
\pages 745--753
\crossref{https://doi.org/10.1007/BF01017062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PW12900018}
Linking options:
https://www.mathnet.ru/eng/tmf1614
https://www.mathnet.ru/eng/tmf/v99/i3/p487
This publication is cited in the following 11 articles:
Jianqing Sun, Xingbiao Hu, Yingnan Zhang, “Quasi-periodic breathers and rogue waves to the focusing Davey–Stewartson equation”, Physica D: Nonlinear Phenomena, 460 (2024), 134084
Stéphanie Ganyou, Chérif S Panguetna, Serge I Fewo, Conrad B Tabi, Timoléon C Kofané, “Two-dimensional dynamics of ion-acoustic waves in a magnetised electronegative plasma”, Pramana - J Phys, 98:1 (2024)
P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110
P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059
C. Özemir, “Davey–Stewartson equations in (3 + 1) dimensions with an infinite-dimensional symmetry algebra”, Lett Math Phys, 110:6 (2020), 1201
Ehab S. Selima, Yadan Mao, Xiaohua Yao, Adel M. Morad, Talaat Abdelhamid, Basem I. Selim, “Applicable symbolic computations on dynamics of small-amplitude long waves and Davey–Stewartson equations in finite water depth”, Applied Mathematical Modelling, 57 (2018), 376
M. Shahmansouri, A. P. Misra, “Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma”, Physics of Plasmas, 23:12 (2016)
Christian Klein, Benson Muite, Kristelle Roidot, “Numerical study of blow-up in the Davey-Stewartson system”, Discrete & Continuous Dynamical Systems - B, 18:5 (2013), 1361
P. Carbonaro, “Three-dimensional modulation of electron-acoustic waves: 3+1 Davey–Stewartson system”, Chaos, Solitons & Fractals, 45:7 (2012), 959
Yurov, AV, “Discrete symmetry's chains and links between integrable equations”, Journal of Mathematical Physics, 44:3 (2003), 1183
A. V. Yurov, “Bäcklund–Shlesinger transformations for Davey–Stewartson equations”, Theoret. and Math. Phys., 109:3 (1996), 1508–1514