Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 99, Number 3, Pages 406–412 (Mi tmf1604)  

Nonlinear evolution of directional solidification patterns

K. Kassnera, C. Misbaha, A. Valanceb, H. Müller-Krumbhaarb

a Max Planck Institute for Solid State Research
b University of Grenoble 1 — Joseph Fourier
References:
Abstract: We have studied directional solidification theoretically for high velocities, where a time-dependent description is essential. The model equations can be simplified into an asymptotically valid strongly nonlinear equation. This quasilocal approximation preserves the essential dynamic features of the system. Analyzing the dynamic evolution of an isotrope-nematic interface, we find, besides the usual parity-breaking solution (PB), a vacillating-breathing (VB) mode, which is associated with spatial period-doubling. Both the PB and VB modes can be understood analytically, the former as the consequence of a $q$$2q$ interaction, the latter on the basis of a perturbative approach. As the relevant system parameter, a renormalized thermal gradient, is decreased, the VB mode goes unstable with respect to parity breaking and acquires a lateral drift velocity. The interface motion is then quasiperiodic. Further decrease of the thermal gradient drives the interface into a chaotic state. We suggest that the quasiperiodicity scenario is generic for systems in which both an oscillatory and a parity-breaking instability exist. This expectation is supported by a study of amplitude equations for the same system, in which only the two most important modes have been retained.
English version:
Theoretical and Mathematical Physics, 1994, Volume 99, Issue 3, Pages 681–686
DOI: https://doi.org/10.1007/BF01017052
Bibliographic databases:
Language: Russian
Citation: K. Kassner, C. Misbah, A. Valance, H. Müller-Krumbhaar, “Nonlinear evolution of directional solidification patterns”, TMF, 99:3 (1994), 406–412; Theoret. and Math. Phys., 99:3 (1994), 681–686
Citation in format AMSBIB
\Bibitem{KasMisVal94}
\by K.~Kassner, C.~Misbah, A.~Valance, H.~M\"uller-Krumbhaar
\paper Nonlinear evolution of directional solidification patterns
\jour TMF
\yr 1994
\vol 99
\issue 3
\pages 406--412
\mathnet{http://mi.mathnet.ru/tmf1604}
\zmath{https://zbmath.org/?q=an:0850.35125}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 3
\pages 681--686
\crossref{https://doi.org/10.1007/BF01017052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PW12900008}
Linking options:
  • https://www.mathnet.ru/eng/tmf1604
  • https://www.mathnet.ru/eng/tmf/v99/i3/p406
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024