Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 2, Pages 179–192
DOI: https://doi.org/10.4213/tmf16
(Mi tmf16)
 

Geometric Properties of $W$-Algebras and the Toda model

S. A. Apikyana, M. A. Barsamianb, K. J. Efthimiouc

a Yerevan State University
b State University of New York
c University of Florida
References:
Abstract: The $W$-algebra minimal models on hyperelliptic Riemann surfaces are constructed. Using a proposal by Polyakov, we reduce the partition function of the Toda field theory on the hyperelliptic surface to a product of partition functions: one of a “free field” theory on the sphere with inserted Toda vertex operators and one of a free scalar field theory with antiperiodic boundary conditions with inserted twist fields.
Keywords: conformal field theory, integrable systems, Toda field theory, hyperelliptic surfaces.
Received: 01.11.2002
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 2, Pages 151–162
DOI: https://doi.org/10.1023/B:TAMP.0000014848.19523.a0
Bibliographic databases:
Language: Russian
Citation: S. A. Apikyan, M. A. Barsamian, K. J. Efthimiou, “Geometric Properties of $W$-Algebras and the Toda model”, TMF, 138:2 (2004), 179–192; Theoret. and Math. Phys., 138:2 (2004), 151–162
Citation in format AMSBIB
\Bibitem{ApiBarEft04}
\by S.~A.~Apikyan, M.~A.~Barsamian, K.~J.~Efthimiou
\paper Geometric Properties of $W$-Algebras and the Toda model
\jour TMF
\yr 2004
\vol 138
\issue 2
\pages 179--192
\mathnet{http://mi.mathnet.ru/tmf16}
\crossref{https://doi.org/10.4213/tmf16}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061735}
\zmath{https://zbmath.org/?q=an:1178.81233}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138..151A}
\elib{https://elibrary.ru/item.asp?id=13689272}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 2
\pages 151--162
\crossref{https://doi.org/10.1023/B:TAMP.0000014848.19523.a0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220283500001}
Linking options:
  • https://www.mathnet.ru/eng/tmf16
  • https://doi.org/10.4213/tmf16
  • https://www.mathnet.ru/eng/tmf/v138/i2/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024