|
Geometric Properties of $W$-Algebras and the Toda model
S. A. Apikyana, M. A. Barsamianb, K. J. Efthimiouc a Yerevan State University
b State University of New York
c University of Florida
Abstract:
The $W$-algebra minimal models on hyperelliptic Riemann surfaces are constructed. Using a proposal by Polyakov, we reduce the partition function of the Toda field theory on the hyperelliptic surface to a product of partition functions: one of a “free field” theory on the sphere with inserted Toda vertex operators and one of a free scalar field theory with antiperiodic boundary conditions with inserted twist fields.
Keywords:
conformal field theory, integrable systems, Toda field theory, hyperelliptic surfaces.
Received: 01.11.2002
Citation:
S. A. Apikyan, M. A. Barsamian, K. J. Efthimiou, “Geometric Properties of $W$-Algebras and the Toda model”, TMF, 138:2 (2004), 179–192; Theoret. and Math. Phys., 138:2 (2004), 151–162
Linking options:
https://www.mathnet.ru/eng/tmf16https://doi.org/10.4213/tmf16 https://www.mathnet.ru/eng/tmf/v138/i2/p179
|
|