Abstract:
The geometrical description of some integrable systems associated with the Toda and Volterra chains is applied to the Hermitian one-matrix model.
Citation:
Manuel Mañas, “The Hermitian matrix model and homogeneous spaces”, TMF, 99:2 (1994), 345–351; Theoret. and Math. Phys., 99:2 (1994), 635–640
\Bibitem{Man94}
\by Manuel Ma\~nas
\paper The Hermitian matrix model and homogeneous spaces
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 345--351
\mathnet{http://mi.mathnet.ru/tmf1596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308798}
\zmath{https://zbmath.org/?q=an:0851.58024}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 635--640
\crossref{https://doi.org/10.1007/BF01016151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100023}
Linking options:
https://www.mathnet.ru/eng/tmf1596
https://www.mathnet.ru/eng/tmf/v99/i2/p345
This publication is cited in the following 2 articles:
Manuel Mañas, “The geometry of the hermitian matrix model and lattices for the NLS and dNLS hierarchies”, Journal of Geometry and Physics, 17:1 (1995), 1