Abstract:
The nonlinear evolution equations and their inhomogeneous versions related through the inverse scattering method to the generalized Zakharov–Shabat system L=id/dx+q(x)−λJL=id/dx+q(x)−λJ are studied. Here we assume that the potential q(x)=[J,Q(x)]q(x)=[J,Q(x)] takes values in the simple Lie algebra g and that J is a nonregular element of the Cartan subalgebra h. The corresponding systems of equations for the scattering data of L are derived. These can be applied to the study of soliton perturbations of such equations as the matrix nonlinear Schrödinger equation, the matrix n–wave equations etc.
Citation:
V. S. Gerdjikov, “The generalized Zakharov–Shabat system and the soliton perturbations”, TMF, 99:2 (1994), 292–299; Theoret. and Math. Phys., 99:2 (1994), 593–598
\Bibitem{Ger94}
\by V.~S.~Gerdjikov
\paper The generalized Zakharov--Shabat system and the soliton perturbations
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 292--299
\mathnet{http://mi.mathnet.ru/tmf1589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308791}
\zmath{https://zbmath.org/?q=an:0850.35108}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 593--598
\crossref{https://doi.org/10.1007/BF01016144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100016}
Linking options:
https://www.mathnet.ru/eng/tmf1589
https://www.mathnet.ru/eng/tmf/v99/i2/p292
This publication is cited in the following 18 articles:
V. S. Gerdjikov, Nianhua Li, V. B. Matveev, A. O. Smirnov, “On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems”, Theoret. and Math. Phys., 213:1 (2022), 1331–1347
Panagiota Adamopoulou, Georgios Papamikos, “Drinfel'd-Sokolov construction and exact solutions of vector modified KdV hierarchy”, Nuclear Physics B, 952 (2020), 114933
Grahovski G.G., “The Generalised Zakharov-Shabat System and the Gauge Group Action”, J. Math. Phys., 53:7 (2012), 073512
Vladimir Gerdjikov, Georgi Grahovski, Rossen Ivanov, “On the integrability of KdV hierarchy with self-consistent sources”, CPAA, 11:4 (2012), 1439
Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.
Gerdjikov V.S., “On Soliton Interactions of Vector Nonlinear Schrodinger Equations”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1404, 2011
Vladimir S. Gerdjikov, “Bose-Einstein condensates and spectral properties of
multicomponent nonlinear Schrödinger equations”, Discrete & Continuous Dynamical Systems - S, 4:5 (2011), 1181
V. S. Gerdjikov, G. G. Grahovski, “Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory”, SIGMA, 6 (2010), 044, 29 pp.
Grecu D., Visinescu A., Fedele R., De Nicola S., “Periodic and Stationary Wave Solutions of Coupled NLS Equations”, Romanian J Phys, 55:5–6 (2010), 585–600
Gerdjikov V.S., Grahovski G.G., “Two Soliton Interactions of BD.I Multicomponent NLS Equations and Their Gauge Equivalent”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 561–572
Grahovski, G, “Generalised Fourier Transform and Perturbations to Soliton Equations”, Discrete and Continuous Dynamical Systems-Series B, 12:3 (2009), 579
Georgi G. Grahovski, Marissa Condon, “On the Caudrey-Beals-Coifman System and the Gauge Group Action”, JNMP, 15:supplement 3 (2008), 197
V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 37
Kostov N.A., Atanasov V.A., Gerdjikov V.S., Grahovski G.G., “On the soliton solutions of the spinor Bose–Einstein condensate”, 14th International School on Quantum Electronics: Laser Physics and Applications, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 6604, 2007, T6041–T6041
Todd Kapitula, “On the stability ofN-solitons in integrable systems”, Nonlinearity, 20:4 (2007), 879
V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions”, Theoret. and Math. Phys., 144:2 (2005), 1147–1156
Qing Ding, Zuonong Zhu, “The Gauge Equivalent Structure of the Landau–Lifshitz Equation and Its Applications*”, J. Phys. Soc. Jpn., 72:1 (2003), 49
T. I. Lakoba, D. J. Kaup, “Perturbation theory for the Manakov soliton and its applications to pulse propagation in randomly birefringent fibers”, Phys. Rev. E, 56:5 (1997), 6147