Abstract:
We formulate several conjectures concerning the structure and general properties of the n×n integrable nondiagonalizable hamiltonian systems of hydrodynamic type. For n=3 our results are in fact complete: a 3×3 nondiagonalizable hamiltonian system is integrable if and only if it is weakly nonlinear (linearly degenerate).
Citation:
E. V. Ferapontov, “Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, TMF, 99:2 (1994), 257–262; Theoret. and Math. Phys., 99:2 (1994), 567–570
\Bibitem{Fer94}
\by E.~V.~Ferapontov
\paper Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 257--262
\mathnet{http://mi.mathnet.ru/tmf1585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308787}
\zmath{https://zbmath.org/?q=an:0851.58022}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 567--570
\crossref{https://doi.org/10.1007/BF01016140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100012}
Linking options:
https://www.mathnet.ru/eng/tmf1585
https://www.mathnet.ru/eng/tmf/v99/i2/p257
This publication is cited in the following 13 articles:
R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, T. T. Vu Ho, “Hamiltonian Aspects of Three-Layer Stratified Fluids”, J Nonlinear Sci, 31:4 (2021)
Maxim V. Pavlov, Nikola M. Stoilov, “The WDVV Associativity Equations as a High-Frequency Limit”, J Nonlinear Sci, 28:5 (2018), 1843
Y. Kodama, B. G. Konopelchenko, “Confluence of hypergeometric functions and integrable hydrodynamic-type systems”, Theoret. and Math. Phys., 188:3 (2016), 1334–1357
Pavlov M.V., Vitolo R.F., “on the Bi-Hamiltonian Geometry of Wdvv Equations”, Lett. Math. Phys., 105:8 (2015), 1135–1163
O. Chvartatskyi, F. Müller-Hoissen, N. Stoilov, ““Riemann equations” in bidifferential calculus”, Journal of Mathematical Physics, 56:10 (2015)
A. I. Zenchuk, “Solutions of multidimensional partial differential equations representable as a one-dimensional flow”, Theoret. and Math. Phys., 178:3 (2014), 299–313
A.I. Zenchuk, “Particular solutions to multidimensional PDEs with KdV-type nonlinearity”, Physics Letters A, 378:14-15 (2014), 999
A. I. Zenchuk, “On integration of a multidimensional version of n-wave type equation”, Journal of Mathematical Physics, 55:12 (2014)
A.I. Zenchuk, “A modification of the method of characteristics: A new class of multidimensional partially integrable nonlinear systems”, Physics Letters A, 375:28-29 (2011), 2704
P.M. Santini, A.I. Zenchuk, “The general solution of the matrix equation”, Physics Letters A, 368:1-2 (2007), 48
T.A. Ivanova, A.D. Popov, “On Symmetries of Chern-Simons and BF Topological Theories”, JNMP, 7:4 (2000), 480
O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622
O. I. Mokhov, E. V. Ferapontov, “The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian
Nondiagonalizable Systems of Hydrodynamic Type”, Funct. Anal. Appl., 30:3 (1996), 195–203