Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 99, Number 2, Pages 241–249 (Mi tmf1583)  

This article is cited in 13 scientific papers (total in 13 papers)

Geometrical properties of the multidimensional nonlinear differential equations and the finsler metrics of phase spaces of dynamical systems

V. S. Dryuma

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
References:
Abstract: The multidimensional nonlinear differential equations arising from special conditions on curvature tensor of 3- and 4-dimensional manifolds are considered. The examples of the Finsler metrics, associated with nonlinear dynamical systems are constructed.
English version:
Theoretical and Mathematical Physics, 1994, Volume 99, Issue 2, Pages 555–561
DOI: https://doi.org/10.1007/BF01016138
Bibliographic databases:
Language: English
Citation: V. S. Dryuma, “Geometrical properties of the multidimensional nonlinear differential equations and the finsler metrics of phase spaces of dynamical systems”, TMF, 99:2 (1994), 241–249; Theoret. and Math. Phys., 99:2 (1994), 555–561
Citation in format AMSBIB
\Bibitem{Dry94}
\by V.~S.~Dryuma
\paper Geometrical properties of the multidimensional nonlinear differential equations and the finsler metrics of phase spaces of dynamical systems
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 241--249
\mathnet{http://mi.mathnet.ru/tmf1583}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308785}
\zmath{https://zbmath.org/?q=an:0856.53024}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 555--561
\crossref{https://doi.org/10.1007/BF01016138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100010}
Linking options:
  • https://www.mathnet.ru/eng/tmf1583
  • https://www.mathnet.ru/eng/tmf/v99/i2/p241
  • This publication is cited in the following 13 articles:
    1. R. C. Kulaev, A. B. Shabat, Trends in Mathematics, Operator Theory and Differential Equations, 2021, 79  crossref
    2. R. Ch. Kulaev, A. B. Shabat, “Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$”, Russian Math. (Iz. VUZ), 64:4 (2020), 35–43  mathnet  crossref  crossref  isi
    3. R. Ch. Kulaev, A. K. Pogrebkov, A. B. Shabat, “Darboux system: Liouville reduction and an explicit solution”, Proc. Steklov Inst. Math., 302 (2018), 250–269  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Viorel Badescu, Understanding Complex Systems, Modeling Thermodynamic Distance, Curvature and Fluctuations, 2016, 3  crossref
    5. T Yajima, H Nagahama, “KCC-theory and geometry of the Rikitake system”, J. Phys. A: Math. Theor., 40:11 (2007), 2755  crossref
    6. V. S. Dryuma, “Toward a Theory of Spaces of Constant Curvature”, Theoret. and Math. Phys., 146:1 (2006), 34–44  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ordinary differential equations their applications and all that”, New Trends in Integrability and Partial Solvability, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 132, 2004, 115–156  isi
    8. Valerii Dryuma, New Trends in Integrability and Partial Solvability, 2004, 115  crossref
    9. Valerii Driuma, Maxim Pavlov, “On initial value problem in theory of the second order differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 2, 51–58  mathnet  mathscinet  zmath
    10. V. V. Dmitrieva, “Point-Invariant Classes of Third-Order Ordinary Differential Equations”, Math. Notes, 70:2 (2001), 175–180  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. R. A. Sharipov, “Newtonian normal shift in multidimensional Riemannian geometry”, Sb. Math., 192:6 (2001), 895–932  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. V. S. Dryuma, “Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations”, Theoret. and Math. Phys., 128:1 (2001), 845–855  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. Lapo Casetti, Marco Pettini, E.G.D. Cohen, “Geometric approach to Hamiltonian dynamics and statistical mechanics”, Physics Reports, 337:3 (2000), 237  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :219
    References:71
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025