Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 99, Number 2, Pages 211–219 (Mi tmf1579)  

This article is cited in 1 scientific paper (total in 1 paper)

The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin

F. Calogeroa, S. De Lillob

a University of Rome "La Sapienza"
b INFN — National Institute of Nuclear Physics
Full-text PDF (711 kB) Citations (1)
References:
Abstract: The nonlinear diffusion–convection equation is considered as a pheno-menological model of two-phase flow in a semi-infinite porous medium. For such model the initial/boundary value problem is solved with a general initial datum and a boundary condition at the origin representing a time-dependent flux. The problem is reduced to a linear integral equation of Volterra type in one dependent variable; in some cases of applicative interest this eqution can be solved by quadratures.
English version:
Theoretical and Mathematical Physics, 1994, Volume 99, Issue 2, Pages 531–537
DOI: https://doi.org/10.1007/BF01016134
Bibliographic databases:
Language: English
Citation: F. Calogero, S. De Lillo, “The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin”, TMF, 99:2 (1994), 211–219; Theoret. and Math. Phys., 99:2 (1994), 531–537
Citation in format AMSBIB
\Bibitem{CalDe 94}
\by F.~Calogero, S.~De Lillo
\paper The nonlinear diffusion--convection equation on the semiline with time-dependent flux at the origin
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 211--219
\mathnet{http://mi.mathnet.ru/tmf1579}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308781}
\zmath{https://zbmath.org/?q=an:0850.35077}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 531--537
\crossref{https://doi.org/10.1007/BF01016134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1579
  • https://www.mathnet.ru/eng/tmf/v99/i2/p211
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :122
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024