Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 99, Number 2, Pages 172–176 (Mi tmf1575)  

This article is cited in 7 scientific papers (total in 7 papers)

Space curve evolution, geometric phase and solitons

Radha Balakrishnan

Institute of Mathematical Sciences
Full-text PDF (517 kB) Citations (7)
References:
Abstract: Certain moving space curves are endowed with a geometric phase. This phase arises due to the path dependence of the rotation of an orthonormal triad (frame) defined at every point on the curve. In the present work we use the connection between moving curves and soliton dynamics to find the geometric phase associated with a class of soliton-supporting equations.
English version:
Theoretical and Mathematical Physics, 1994, Volume 99, Issue 2, Pages 501–504
DOI: https://doi.org/10.1007/BF01016130
Bibliographic databases:
Language: English
Citation: Radha Balakrishnan, “Space curve evolution, geometric phase and solitons”, TMF, 99:2 (1994), 172–176; Theoret. and Math. Phys., 99:2 (1994), 501–504
Citation in format AMSBIB
\Bibitem{Bal94}
\by Radha Balakrishnan
\paper Space curve evolution, geometric phase and solitons
\jour TMF
\yr 1994
\vol 99
\issue 2
\pages 172--176
\mathnet{http://mi.mathnet.ru/tmf1575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308777}
\zmath{https://zbmath.org/?q=an:0856.35111}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 99
\issue 2
\pages 501--504
\crossref{https://doi.org/10.1007/BF01016130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PV07100002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1575
  • https://www.mathnet.ru/eng/tmf/v99/i2/p172
  • This publication is cited in the following 7 articles:
    1. Şerife Nevin Gürbüz, “Geoemetric phases and magnetic curves for Darboux frames on lightlike and timelike surfaces”, Journal of Universal Mathematics, 2024  crossref
    2. Talat Körpinar, Ahmet Sazak, Zeliha Körpinar, “Optical modeling of Hasimoto map for antiferromagnetic timelike optical fiber”, Optik, 251 (2022), 168302  crossref
    3. T. Korpinar, R. Cem Demirkol, Z. Korpinar, “New fractional Heisenberg antiferromagnetic model and solitonic magnetic flux surfaces with normal direction”, Int. J. Geom. Methods Mod. Phys., 18:09 (2021), 2150136  crossref
    4. Talat Körp{\i}nar, R{\i}dvan Cem Demirkol, Zeliha Körp{\i}nar, “Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space”, Optik, 238 (2021), 166403  crossref
    5. Talat Körp{\i}nar, R{\i}dvan Cem Demirkol, Zeliha Körp{\i}nar, “New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction”, Phys. Scr., 96:8 (2021), 085219  crossref
    6. Nevin Gürbüz, “Three classes of non-lightlike curve evolution according to Darboux frame and geometric phase”, Int. J. Geom. Methods Mod. Phys., 15:02 (2018), 1850023  crossref
    7. Anjan Kundu, Walter Strampp, “Derivative and higher-order extensions of Davey–Stewartson equation from matrix Kadomtsev–Petviashvili hierarchy”, Journal of Mathematical Physics, 36:8 (1995), 4192  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :140
    References:54
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025