Abstract:
The interrelations between Calogero quantum problem and Knizhnik–Zamolodchikov equation are described following Matsuo, Cherednik, Felder and the author. As the basic tool of the considerations the Dunkl operator is used. The generalizations related to arbitrary Coxeter group and the applications to the Hadamard problem about the hyperbolic equations with the Huygens principle are discussed.
This publication is cited in the following 12 articles:
A. Grekov, A. Zabrodin, A. Zotov, “Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nuclear Phys. B, 939 (2019), 174–190
A. Zabrodin, A. Zotov, “KZ-Calogero correspondence revisited”, J. Phys. A, 50 (2017), 205202–12
K. R. Zabirova, V. V. Napalkov, “Composition Operators of Convolution and Multiplication by a Function”, Math. Notes, 99:3 (2016), 368–377
V. E. Adler, Yu. Yu. Berest, V. M. Buchstaber, P. G. Grinevich, B. A. Dubrovin, I. M. Krichever, S. P. Novikov, A. N. Sergeev, M. V. Feigin, J. Felder, E. V. Ferapontov, O. A. Chalykh, P. I. Etingof, “Alexander Petrovich Veselov (on his 60th birthday)”, Russian Math. Surveys, 71:6 (2016), 1159–1176
K. M. Bulycheva, A. S. Gorsky, “Limit cycles in renormalization group dynamics”, Phys. Usp., 57:2 (2014), 171–182
K. Bulycheva, A. Gorsky, “BPS states in the Ω-background and torus knots”, J. High Energ. Phys., 2014:4 (2014)
A. P. Veselov, Progress in Mathematics, 169, European Congress of Mathematics, 1998, 259
V. A. Golubeva, V. P. Leksin, “On reconstruction of Veselov–Felder formula in the theory of Calogero–Sutherland operators”, Theoret. and Math. Phys., 106:1 (1996), 50–60
V. M. Buchstaber, A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math Z, 223:4 (1996), 595
V. M. Buchstaber, A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math Z, 223:1 (1996), 595
V. M. Buchstaber, A. P. Veselov, “Dunkl operators, functional equations, and transformations of elliptic genera”, Russian Math. Surveys, 49:2 (1994), 145–147
Yu. Yu. Berest, A. P. Veselov, “Huygens' principle and integrability”, Russian Math. Surveys, 49:6 (1994), 5–77