Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 98, Number 3, Pages 500–508 (Mi tmf1558)  

This article is cited in 32 scientific papers (total in 32 papers)

Null vectors, 3-point and 4-point functions in conformal field theory

P. Bowcock, G. Watts
References:
Abstract: We consider 3-point and 4-point correlation functions in a conformal field theory with a $W$-algebra symmetry. Whereas in a theory with only Virasoro symmetry the three point functions of descendants fields are uniquely determined by the three point function of the corresponding primary fields this is not the case for a theory with $W_3$ algebra symmetry. The generic 3-point functions of $W$-descendant fields have a countable degree of arbitrariness. We find, however, that if one of the fields belongs to a representation with null states that this has implications for the 3-point functions. In particular if one of the representations is doubly-degenerate then the 3-point function is determined up to an overall constant. We extend our analysis to 4-point functions and find that if two of the $W$-primary fields are doubly degenerate then the intermediate channels are limited to a finite set and that the corresponding chiral blocks are determined up to an overall constant. This corresponds to the existence of a linear differential equation for the chiral blocks with two completely degenerate fields as has been found in the work of Bajnok et al.
English version:
Theoretical and Mathematical Physics, 1994, Volume 98, Issue 3, Pages 350–356
DOI: https://doi.org/10.1007/BF01102212
Bibliographic databases:
Language: Russian
Citation: P. Bowcock, G. Watts, “Null vectors, 3-point and 4-point functions in conformal field theory”, TMF, 98:3 (1994), 500–508; Theoret. and Math. Phys., 98:3 (1994), 350–356
Citation in format AMSBIB
\Bibitem{BowWat94}
\by P.~Bowcock, G.~Watts
\paper Null vectors, 3-point and 4-point functions in conformal field theory
\jour TMF
\yr 1994
\vol 98
\issue 3
\pages 500--508
\mathnet{http://mi.mathnet.ru/tmf1558}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1304746}
\zmath{https://zbmath.org/?q=an:0834.17041}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 3
\pages 350--356
\crossref{https://doi.org/10.1007/BF01102212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ98700016}
Linking options:
  • https://www.mathnet.ru/eng/tmf1558
  • https://www.mathnet.ru/eng/tmf/v98/i3/p500
  • This publication is cited in the following 32 articles:
    1. Konstantin Alkalaev, Pavel Litvinov, “A note on the large-c conformal block asymptotics and α-heavy operators”, Nuclear Physics B, 2024, 116741  crossref
    2. Bruno Le Floch, “A slow review of the AGT correspondence”, J. Phys. A: Math. Theor., 55:35 (2022), 353002  crossref
    3. Gavrylenko P., Iorgov N., Lisovyy O., “Higher-Rank Isomonodromic Deformations and W-Algebras”, Lett. Math. Phys., 110:2 (2020), 327–364  crossref  isi
    4. Ondřej Hulík, Joris Raeymaekers, Orestis Vasilakis, “Multi-centered higher spin solutions from $ {\mathcal{W}}_N $ conformal blocks”, J. High Energ. Phys., 2018:11 (2018)  crossref
    5. Furlan P., Petkova V.B., “W-4 Toda Example as Hidden Liouville CFT”, Phys. Part. Nuclei Lett., 14:2 (2017), 286–290  crossref  isi
    6. Vladimir Belavin, Xiangyu Cao, Benoit Estienne, Raoul Santachiara, “Second level semi-degenerate fields in
      W 3 $ {\mathcal{W}}_3 $ Toda theory: matrix element and differential equation”, J. High Energ. Phys., 2017:3 (2017)  crossref
    7. P. G. Gavrilenko, A. V. Marshakov, “Free fermions, $W$-algebras, and isomonodromic deformations”, Theoret. and Math. Phys., 187:2 (2016), 649–677  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Gavrylenko P., Marshakov A., “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, J. High Energy Phys., 2016, no. 2, 181  crossref  mathscinet  isi  elib  scopus
    9. Mikhail Isachenkov, Vladimir Mitev, Elli Pomoni, “Toda 3-point functions from topological strings II”, J. High Energ. Phys., 2016:8 (2016)  crossref
    10. Ashwin Hegde, Per Kraus, Eric Perlmutter, “General results for higher spin Wilson lines and entanglement in Vasiliev theory”, J. High Energ. Phys., 2016:1 (2016)  crossref
    11. Juan Pablo Babaro, Gaston Giribet, Arash Ranjbar, “Conformal field theories from deformations of theories withWnsymmetry”, Phys. Rev. D, 94:8 (2016)  crossref
    12. Vladimir Belavin, Benoit Estienne, Omar Foda, Raoul Santachiara, “Correlation functions with fusion-channel multiplicity in W 3 $ {\mathcal{W}}_3 $ Toda field theory”, J. High Energ. Phys., 2016:6 (2016)  crossref
    13. Furlan P. Petkova V.B., “on Some 3-Point Functions in the W-4 CFT and Related Braiding Matrix”, J. High Energy Phys., 2015, no. 12, 079, 1–23  crossref  isi
    14. Alekseev O., Novaes F., “Wilson Loop Invariants From W-N Conformal Blocks”, Nucl. Phys. B, 901 (2015), 461–479  crossref  isi
    15. Ioana Coman, Maxime Gabella, Jörg Teschner, “Line operators in theories of class S $ \mathcal{S} $ , quantized moduli space of flat connections, and Toda field theory”, J. High Energ. Phys., 2015:10 (2015)  crossref
    16. P. Gavrylenko, “Isomonodromic τ-functions and W
      N conformal blocks”, J. High Energ. Phys., 2015:9 (2015)  crossref
    17. Eric Perlmutter, “Comments on Rényi entropy in AdS3/CFT2”, J. High Energ. Phys., 2014:5 (2014)  crossref
    18. Ling Bao, Vladimir Mitev, Elli Pomoni, Masato Taki, Futoshi Yagi, “Non-Lagrangian theories from brane junctions”, J. High Energ. Phys., 2014:1 (2014)  crossref
    19. V. A. Fateev, A. V. Litvinov, “Integrable structure, W-symmetry and AGT relation”, J. High Energ. Phys., 2012:1 (2012)  crossref
    20. Jaume Gomis, Bruno Le Floch, “'t Hooft operators in gauge theory from Toda CFT”, J. High Energ. Phys., 2011:11 (2011)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :114
    References:79
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025