Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 98, Number 3, Pages 430–441 (Mi tmf1552)  

This article is cited in 1 scientific paper (total in 1 paper)

Affine lie algebras in massive field theory and form factors from vertex operators

A. LeClair
References:
Abstract: We present a new application of affine Lie algebras to massive quantum field theory in 2 dimensions, by investigating the $q\to 1$ limit of the $q$-deformed affine $\widehat {sl(2)}$ symmetry of the sine-Gordon theory, this limit occurring at the free fermion point. Working in radial quantization leads to a quasi-chiral factorization of the space of fields. The conserved charges which generate the affine Lie algebra split into two independent affine algebras on this factorized space, each with level 1 in the anti-periodic sector, and level 0 in the periodic sector. The space of fields in the anti-periodic sector can be organized using level-$1$ highest weight representations, if one supplements the ${\widehat {sl(2)}}$ algebra with the usual local integrals of motion. Introducing a particle-field duality leads to a new way of computing form-factors in radial quantization. Using the integrals of motion, a momentum space bosonization involving vertex operators is formulated. Form-factors are computed as vacuum expectation values of vertex operators in momentum space.
English version:
Theoretical and Mathematical Physics, 1994, Volume 98, Issue 3, Pages 297–305
DOI: https://doi.org/10.1007/BF01102206
Bibliographic databases:
Language: Russian
Citation: A. LeClair, “Affine lie algebras in massive field theory and form factors from vertex operators”, TMF, 98:3 (1994), 430–441; Theoret. and Math. Phys., 98:3 (1994), 297–305
Citation in format AMSBIB
\Bibitem{Lec94}
\by A.~LeClair
\paper Affine lie algebras in massive field theory and form factors from vertex operators
\jour TMF
\yr 1994
\vol 98
\issue 3
\pages 430--441
\mathnet{http://mi.mathnet.ru/tmf1552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1304740}
\zmath{https://zbmath.org/?q=an:0832.17029}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 3
\pages 297--305
\crossref{https://doi.org/10.1007/BF01102206}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ98700010}
Linking options:
  • https://www.mathnet.ru/eng/tmf1552
  • https://www.mathnet.ru/eng/tmf/v98/i3/p430
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :98
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024