Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 98, Number 3, Pages 388–403 (Mi tmf1549)  

This article is cited in 5 scientific papers (total in 5 papers)

The quantum symmetry of rational field theories

J. Fuchs
References:
Abstract: The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal $C^*$-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined.
English version:
Theoretical and Mathematical Physics, 1994, Volume 98, Issue 3, Pages 266–276
DOI: https://doi.org/10.1007/BF01102203
Bibliographic databases:
Language: English
Citation: J. Fuchs, “The quantum symmetry of rational field theories”, TMF, 98:3 (1994), 388–403; Theoret. and Math. Phys., 98:3 (1994), 266–276
Citation in format AMSBIB
\Bibitem{Fuc94}
\by J.~Fuchs
\paper The quantum symmetry of rational field theories
\jour TMF
\yr 1994
\vol 98
\issue 3
\pages 388--403
\mathnet{http://mi.mathnet.ru/tmf1549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1304737}
\zmath{https://zbmath.org/?q=an:0833.46058}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 98
\issue 3
\pages 266--276
\crossref{https://doi.org/10.1007/BF01102203}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ98700007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1549
  • https://www.mathnet.ru/eng/tmf/v98/i3/p388
  • This publication is cited in the following 5 articles:
    1. J. Mund, K.-H. Rehren, Encyclopedia of Mathematical Physics, 2006, 172  crossref
    2. Jürgen Fuchs, Ingo Runkel, Christoph Schweigert, “TFT construction of RCFT correlators I: partition functions”, Nuclear Physics B, 646:3 (2002), 353  crossref
    3. FRANK HAUSSER, FLORIAN NILL, “DIAGONAL CROSSED PRODUCTS BY DUALS OF QUASI-QUANTUM GROUPS”, Rev. Math. Phys., 11:05 (1999), 553  crossref
    4. V. P. Maslov, O. Yu. Shvedov, “Complex germ method in the Fock space. II. Asymptotics, corresponding to finite-dimensional isotropic manifolds”, Theoret. and Math. Phys., 104:3 (1995), 1141–1161  mathnet  mathnet  crossref  isi
    5. V. P. Maslov, “Semiclassical asymptotics of the eigenfunctions of the Schrödinger-Hartree equation. New form of classical self-consistent field”, Theoret. and Math. Phys., 99:1 (1994), 484–493  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :105
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025