Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 93, Number 2, Pages 354–368 (Mi tmf1533)  

This article is cited in 5 scientific papers (total in 5 papers)

Multicut solutions of the matrix Kontsevich–Penner model

K. L. Zarembo, L. O. Chekhov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Multicut solutions of the Hermitian one-matrix model parametrized by the recently introduced matrix model [1] with external field and Lagrangian having the form $\,\operatorname {tr}{(\Lambda X\Lambda X)} - \alpha N$ $(\log {(1+X)} -X)$ are considered. A brief review of the model, which describes the discretized moduli space of Riemann surfaces, is given. The general structure of multicut solutions is investigated, and it is shown that there arises an additional symmetry and that $s$ parameters remain free for the $(s+1)$-cut solution. A detailed analysis of the one-cut solution is made. Among other results, all solutions of Kazakov type are reproduced. We also discuss the general form for the two-cut solution which arises as generalization of the string equation to the case of two cuts. The entire treatment is given in the approximation of planar diagrams.
Received: 17.06.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 93, Issue 2, Pages 1328–1336
DOI: https://doi.org/10.1007/BF01083530
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. L. Zarembo, L. O. Chekhov, “Multicut solutions of the matrix Kontsevich–Penner model”, TMF, 93:2 (1992), 354–368; Theoret. and Math. Phys., 93:2 (1992), 1328–1336
Citation in format AMSBIB
\Bibitem{ZarChe92}
\by K.~L.~Zarembo, L.~O.~Chekhov
\paper Multicut solutions of the matrix Kontsevich--Penner model
\jour TMF
\yr 1992
\vol 93
\issue 2
\pages 354--368
\mathnet{http://mi.mathnet.ru/tmf1533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1233551}
\zmath{https://zbmath.org/?q=an:0788.32016}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 2
\pages 1328--1336
\crossref{https://doi.org/10.1007/BF01083530}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LJ23200012}
Linking options:
  • https://www.mathnet.ru/eng/tmf1533
  • https://www.mathnet.ru/eng/tmf/v93/i2/p354
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024