Abstract:
A method is developed for constructing single valued rational 4-point functions of primary fields for $su_2$ conformal current algebra satisfying the Knizhnik–Zamolodchikov equation. For integer conformal dimensions $\Delta$ these rational solutions are proven to be in one-to-one correspondence with non-diagonal modular invariant partition functions of the D-even and
E-even series of the ADE classification.
Citation:
L. Michel, Ya. S. Stanev, I. T. Todorov, “D-E classification of the local extensions of $SU_2$ current algebras”, TMF, 92:3 (1992), 507–521; Theoret. and Math. Phys., 92:3 (1992), 1063–1074
\Bibitem{MicStaTod92}
\by L.~Michel, Ya.~S.~Stanev, I.~T.~Todorov
\paper D-E classification of the local extensions of $SU_2$ current algebras
\jour TMF
\yr 1992
\vol 92
\issue 3
\pages 507--521
\mathnet{http://mi.mathnet.ru/tmf1520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225795}
\zmath{https://zbmath.org/?q=an:0813.17022}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 3
\pages 1063--1074
\crossref{https://doi.org/10.1007/BF01017084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC29200013}
Linking options:
https://www.mathnet.ru/eng/tmf1520
https://www.mathnet.ru/eng/tmf/v92/i3/p507
This publication is cited in the following 5 articles:
Hadjiivanov L. Furlan P., “Quantum Groups as Generalized Gauge Symmetries in WZNW Models. Part II. the Quantized Model”, Phys. Part. Nuclei, 48:4 (2017), 564–621
Furlan, P, “Zero modes' fusion ring and braid group representations for the extended chiral su(2) WZNW model”, Letters in Mathematical Physics, 82:2–3 (2007), 117
Alexander Nichols, “Extended chiral algebras in the SU(2)0WZNW model”, J. High Energy Phys., 2002:04 (2002), 056
Yassen S. Stanev, Ivan T. Todorov, Lecture Notes in Physics, 469, Low-Dimensional Models in Statistical Physics and Quantum Field Theory, 1996, 201
Karl-Henning Rehren, Yassen S. Stanev, Ivan T. Todorov, “Characterizing invariants for local extensions of current algebras”, Commun.Math. Phys., 174:3 (1996), 605