Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 92, Number 3, Pages 466–472 (Mi tmf1516)  

This article is cited in 5 scientific papers (total in 5 papers)

Perturbation of differential operators on high-codimension manifold and the extension theory for symmetric linear relations in an indefinite metric space

Yu. G. Shondin

Nizhny Novgorod State Pedagogical University
Full-text PDF (677 kB) Citations (5)
References:
Abstract: The problem of realization of nontrivial perturbations supported on thin sets of “codimension” $\nu$ in $R^n$ for elliptic operators of order $m$, when $\nu\geqslant 2m$, is formulated as one of construction of the self-adjoint extensions of some symmetric linear relation in an indefinite metric space. The self-adjoint extensions and their resolvents are described. It is found that the same extensions can be obtained as a result of extensions of some symmetric operator in $L_2(R^n)$ with outgoing to a larger indefinite metric space. But such operator is picked out already by the “nonlocal” boundary conditions. Applications to quantum models of point interactions are discussed.
Received: 17.06.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 92, Issue 3, Pages 1032–1037
DOI: https://doi.org/10.1007/BF01017080
Bibliographic databases:
Language: English
Citation: Yu. G. Shondin, “Perturbation of differential operators on high-codimension manifold and the extension theory for symmetric linear relations in an indefinite metric space”, TMF, 92:3 (1992), 466–472; Theoret. and Math. Phys., 92:3 (1992), 1032–1037
Citation in format AMSBIB
\Bibitem{Sho92}
\by Yu.~G.~Shondin
\paper Perturbation of differential operators on high-codimension manifold and the extension theory for symmetric linear relations in an indefinite metric space
\jour TMF
\yr 1992
\vol 92
\issue 3
\pages 466--472
\mathnet{http://mi.mathnet.ru/tmf1516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225791}
\zmath{https://zbmath.org/?q=an:0806.47043}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 3
\pages 1032--1037
\crossref{https://doi.org/10.1007/BF01017080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC29200009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1516
  • https://www.mathnet.ru/eng/tmf/v92/i3/p466
  • This publication is cited in the following 5 articles:
    1. Yuri Shondin, “On approximation of high order singular perturbations”, J. Phys. A: Math. Gen., 38:22 (2005), 5023  crossref
    2. S. Albeverio, V. Koshmanenko, S. Kuzhel, “On a variant of abstract scattering theory in terms of quadratic forms”, Reports on Mathematical Physics, 54:3 (2004), 309  crossref
    3. Aad Dijksma, Heinz Langer, Yuri Shondin, Chris Zeinstra, Operator Theory and Related Topics, 2000, 105  crossref
    4. Seppo Hassi, Henk de Snoo, “Nevanlinna Functions, Perturbation Formulas, and Triplets of Hilbert Spaces”, Mathematische Nachrichten, 195:1 (1998), 115  crossref
    5. Yu. G. Shondin, “Semibounded local hamiltonians for perturbations of the laplacian supported by curves with angle points in $\mathbb R^4$”, Theoret. and Math. Phys., 106:2 (1996), 151–166  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :96
    References:37
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025