Abstract:
A graded Holstein–Primakoff realization of the SU(2/1) algebra is proposed. A spin-wave theory with a condition that the sublattice magnetization is zero is discussed. A long-range spiral (incommensurate) phase is obtained at small doping and at T=0. The spin-spin correlator is calculated.
\Bibitem{Kar92}
\by N.~I.~Karchev
\paper Graded spin-wave theory of $t-J$ model
\jour TMF
\yr 1992
\vol 92
\issue 3
\pages 415--424
\mathnet{http://mi.mathnet.ru/tmf1512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225787}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 3
\pages 988--996
\crossref{https://doi.org/10.1007/BF01017076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC29200005}
Linking options:
https://www.mathnet.ru/eng/tmf1512
https://www.mathnet.ru/eng/tmf/v92/i3/p415
This publication is cited in the following 2 articles:
Č. Burdík, O. Navrátil, “The q-boson-fermion realizations of the quantum superalgebra U q (osp(1/2))”, Phys. Atom. Nuclei, 68:10 (2005), 1643
T. D. PALEV, “A GENERALIZATION OF THE HOLSTEIN–PRIMAKOFF AND THE DYSON EXPANSIONS FOR THE QUANTUM SUPERALGEBRA Uq [gl(n/m)]”, Mod. Phys. Lett. A, 14:04 (1999), 299