Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 92, Number 3, Pages 387–403 (Mi tmf1510)  

This article is cited in 44 scientific papers (total in 44 papers)

An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates

A. S. Fokas, A. R. Its

Clarkson University
References:
Abstract: We consider the sine-Gordon equation in laboratory coordinates with both x and t in [0,). We assume that u(x,0), ut(x,0), u(0,t) are given, and that they satisfy u(x,0)2πq, ut(x,0)0, for large x, u(0,t)2πp for large t, where qp are integers. We also assume that ux(x,0), ut(x,0), ut(0,t), u(0,t)2πp, u(x,0)2πqL2. We show that the solution of this initial-boundary value problem can be reduced to solving a linear integral equation which is always solvable. The asymptotic analysis of this integral equation for large t, shows how the boundary conditions can generate solitons.
Received: 30.06.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 92, Issue 3, Pages 964–978
DOI: https://doi.org/10.1007/BF01017074
Bibliographic databases:
Language: English
Citation: A. S. Fokas, A. R. Its, “An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates”, TMF, 92:3 (1992), 387–403; Theoret. and Math. Phys., 92:3 (1992), 964–978
Citation in format AMSBIB
\Bibitem{FokIts92}
\by A.~S.~Fokas, A.~R.~Its
\paper An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates
\jour TMF
\yr 1992
\vol 92
\issue 3
\pages 387--403
\mathnet{http://mi.mathnet.ru/tmf1510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225785}
\zmath{https://zbmath.org/?q=an:0802.35133}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 92
\issue 3
\pages 964--978
\crossref{https://doi.org/10.1007/BF01017074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC29200003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1510
  • https://www.mathnet.ru/eng/tmf/v92/i3/p387
  • This publication is cited in the following 44 articles:
    1. A. Chatziafratis, A.S. Fokas, K. Kalimeris, “The Fokas method for evolution partial differential equations”, Partial Differential Equations in Applied Mathematics, 2025, 101144  crossref
    2. Cong Liu, Jian Xu, “On the linearizable initial–boundary value problems for the Sasa–Satsuma equation on the half-line”, Applied Mathematics Letters, 150 (2024), 108941  crossref
    3. Y Pérez Peña, J Ortíz Sánchez, F J Ariza Hernández, M P Árciga Alejandre, “Initial-boundary value problem for a fractional heat equation on an interval”, IMA Journal of Applied Mathematics, 88:4 (2023), 632  crossref
    4. Zhenya Yan, “An initial-boundary value problem for the general three-component nonlinear Schrödinger equations on a finite interval”, IMA Journal of Applied Mathematics, 86:3 (2021), 427  crossref
    5. Qiaozhen Zhu, Jian Xu, Engui Fan, “Initial-boundary value problem for the two-component Gerdjikov-Ivanov equation on the interval”, JNMP, 25:1 (2021), 136  crossref
    6. Vu P., “Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations”, Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations, Monographs and Research Notes in Mathematics, Crc Press-Taylor & Francis Group, 2020, 1–388  isi
    7. Vu Ph.L., “Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Preface”: Vu, PL, Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations, Monographs and Research Notes in Mathematics, Crc Press-Taylor & Francis Group, 2020, XV+  isi
    8. Zhenya Yan, “Initial-boundary value problem for the spin-1 Gross-Pitaevskii system with a 4 × 4 Lax pair on a finite interval”, Journal of Mathematical Physics, 60:8 (2019)  crossref
    9. Lin Huang, Jonatan Lenells, “Nonlinear Fourier transforms for the sine-Gordon equation in the quarter plane”, Journal of Differential Equations, 264:5 (2018), 3445  crossref
    10. Lin Huang, Jonatan Lenells, “Construction of solutions and asymptotics for the sine-Gordon equation in the quarter plane”, Journal of Integrable Systems, 3:1 (2018)  crossref
    11. Jian Xu, Qiaozhen Zhu, Engui Fan, “The initial-boundary value problem for the Sasa-Satsuma equation on a finite interval via the Fokas method”, Journal of Mathematical Physics, 59:7 (2018)  crossref
    12. Qiaozhen ZHU, Engui FAN, Jian XU, “The GLM representation of the two-component nonlinear Schrödinger equation on the half-line”, Acta Mathematica Scientia, 38:6 (2018), 1846  crossref
    13. M. S. Filipkovska, V. P. Kotlyarov, E. A. Melamedova (Moskovchenko), “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, Zhurn. matem. fiz., anal., geom., 13:2 (2017), 119–153  mathnet  crossref
    14. Shou-Fu Tian, “Initial–boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method”, Journal of Differential Equations, 262:1 (2017), 506  crossref
    15. Qiao-Zhen Zhu, En-Gui Fan, Jian Xu, “Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line”, Commun. Theor. Phys., 68:4 (2017), 425  crossref
    16. Zhenya Yan, “An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 × 4 Lax pair on the half-line”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:5 (2017)  crossref
    17. Jian Xu, Engui Fan, “The GLM representation of the global relation for the two-component nonlinear Schrödinger equation on the interval”, Journal of Mathematical Physics, 58:2 (2017)  crossref
    18. Shou-Fu Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204  crossref
    19. Jian Xu, Engui Fan, “Initial‐Boundary Value Problem for Integrable Nonlinear Evolution Equation with 3 × 3 Lax Pairs on the Interval”, Stud Appl Math, 136:3 (2016), 321  crossref
    20. Shou-Fu Tian, “The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method”, Proc. R. Soc. A., 472:2195 (2016), 20160588  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :145
    References:66
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025